Applying Motivation Theory to Diabetes Management

Just after we got married, my wife and I embarked on an MBA (Masters of Business Administration). Along with teaching how the organs of business work, there were some interesting electives to choose from. One of the ones I chose was “Leadership and Motivation”. It provided guidance of how to lead people (as opposed to managing them), and how to motivate people. Obviously, in the context of an MBA, it was to help employees stay motivated to work on tasks deemed important to their employer, but I see parallels in the management of diabetes as well i.e. working on tasks deemed important for survival. For those not interested in the details, you can skip ahead to the tl;dr.

The 3C Model

The course was taught by Professor H.M. Kehr, formerly of UC Berkeley who created what is now called the “3C Model“; the Three Components Model.

I find it easier to remember it as the “Head, Hearts, and Hands” model. While relatively simple, the model brought together various motivational models of the time e.g. Csikszentmihalyi and Rheinberg. In this case the head, heart and hands are:

  • Head: Our logical thoughts regarding the task at hand
  • Heart: How we feel about the task at hand
  • Hands: Our ability to perform the task at hand

Other key concepts with the model are “volition” which, for the rest of us, is willpower and “flow”, a state of “effortless achievement”, which is sport is sometimes referred to as being “in the zone”. In short, when the head, heart, and hands are aligned, achievement is effortless.

Another key aspect of the model is the understanding that willpower is a finite resource which cannot be called upon indefinitely and, if pushed to its limit, leads to burnout. Burnout, of course, is a term familiar to many of us who manage diabetes meaning a complete abandonment of diabetes management.

Misalignment and Intervention

While alignment of the head, heart, and hands leads to a “flow state”, misalignment means willpower will be needed to achieve the task. For a task, such as diabetes management which is relentless, it is clear, without intervention, burnout is inevitable. Ideally, the intervention will either give the person a break from the task, allowing willpower to recharge, or make the amount of necessary willpower so small as to prolong burnout practically indefinitely.

Depending on which component is not aligned to the task, this dictates the kind of intervention to use.

When the head is the problem i.e. the person is emotionally aligned and has the skills, but there is a logical conflict, the person may need further convincing, have additional incentives put in place, or have the goals adjusted.

When the heart is the problem i.e. the task makes logical sense and they have the skills but it does not feel right, or they fear the task, emotional support, redesigning the approach, or focussing on the eventual outcome may help.

When the hands are the problem i.e. the person does not have the skills or knowledge to achieve the task, the answer may be education/training, coaching, or having others provide assistance.

Again, we start to see how this model could be overlay onto diabetes management and ensuring a specific approach is a good fit to the individual.

An Example of the Application of the Model

A classic example is the case of someone wanting to give up smoking. They know logically is makes sense (head), and may well have the skills to do it e.g. employing patches (hands), but their heart may not be in it or they fear failure. In this case we see suggested interventions which are often applied to help people give up smoking e.g. in New South Wales we have the ICanQuit web site and Quitline where people looking to give up smoking can call and get support and encouragement to help them on the path.

Application to Diabetes Management

The model provides insight into why intensive lifestyle interventions fail so often. While radical changes to diet or exercise in the management of diabetes frequently address the head and hands, the heart is almost always ignored and is the key point of failure. Very few of us deny the health benefits of exercise and most of us are capable of walking/running yet, like smoking, many of us fail to incorporate it into our lives. Simply put, our heart is not in it. Options to make exercise more palatable could be engaging a physical trainer to provide motivation (support), entering a charity fun run and then training towards the goal for the greater good (new motivators), or changing the type of exercise to something more enjoyable or aligned to the person’s lifestyle (redesigning the work).

In the case of Weight Watchers, the success rate is quoted at 11%. Even with intense coaching on top of lifestyle changes, one study showed remission for Type 2 was only achieved in 3.5% of participants. In the case of the Dr. Bernstein diet where the logic of the benefits of lowering dietary carbohydrates is sound (head), and there is no doubt, once the book is read, someone with Type 1 is equipped to undertake the program (hands), the majority of the strongest adherents, who literally commit to following the program to be part of the “international social group”, failed to meet the basic premise of sticking to 30g of carbohydrates per day. This is not the fault of any one program; the fact is changing habits and maintaining that change is hard and we need to consider the whole person to be successful. We must align the head, hearts, and hands for each person and provide the support that person needs. There is no “one size fits all”.

We also see this with diabetes technology. While the clinical studies speak at the benefits of, for instance, looping systems at improving outcomes (head), there may be a fear of using the technology due to a lack of skills/knowledge (hands) or the person simply does not like the idea of permanently wearing something on the body (heart). Professor Katharine Barnard-Kelly presents on this often at conferences and passionately believes “heart interventions” are effective at improving outcomes.

Professor Barnard-Kelly has also developed the Spotlight-AQ system which facilitates pre-clinic assessments to ascertain where interventions may be required e.g. the need for structured education (head/hands).

Putting the spotlight on my “Practical Diabetic Solution”, I think, if someone commits to replacing all meals, as I did, this would usually not be sustainable because the conflict with the heart e.g. no longer sharing food with family/friends would be simply too great. However, replacing non-social meals would not require the same level of willpower and the use of looping technology would greatly reduce the mental burden of daily management, assuming the person has the skills to use the loop (hands) and understand the benefits (head). To put it simply, the level of commitment and tool emphasis would be different for each individual, but a sustained improvement is better than one which fails to be maintained, however successful in the beginning.

How Can We Use This Model?

My vision is this could be used for self-assessment but also as a framework for the discussion between the health care team and the person with diabetes. For example, by considering why exercise may not work in the context of the three areas, a plan to address the disconnect can be intelligently devised. In the case of technology and medication, if one tool is not aligned, other tools can be considered instead with a closer fit, or other appropriate interventions considered.

tl;dr

The 3C Model of motivation, primarily used in the context of motivating employees, can also be applied to the management of diabetes and to frame conversations between health care professionals and their clients (people with diabetes).

The model focuses on three aspects of the individual, their:

  • Head: logical thoughts on a diabetes management approach
  • Heart: their emotional response to a diabetes management approach
  • Hands: their skills and knowledge regarding a diabetes management approach

When all three are aligned with the approach, its use as part of the diabetes management plan is effortless. When one or more are not aligned, interventions are required to reduce the excessive need of willpower to use the approach which could lead to burnout. Interventions may include:

  • Head: Education, adjustment to goals
  • Heart: Support, redesigning of the approach
  • Hands: Training, assistance

With a framework in place, it will be easier to identify appropriate interventions and optimise outcomes.

The Practical Diabetic Solution: The Modern Guide To Achieving Normal Blood Sugars (or Pretty Good Blood Sugars, You Decide)

This week I underwent an experiment to see what would happen if I combined a very low carbohydrate meal replacement, a commercial looping system, and snacking to cover hunger pangs. The results were better than I expected and, over the four days, I was seeing normal, non-diabetic blood sugars. Unlike other regimens, I did it with:

  • No exercise
  • No bolusing
  • No hypo treatments
  • No meal plans
  • With insulin resistance and a daily insulin requirement of over 70 units per day

You can see the details of the setup here but, in this post, I thought I would go through the results and, now I am on the other side, reiterate why I believe it is a superior approach to Dr. Bernstein’s.

Before and After

So, before the four days, I had:

  • Average Glucose of 7.2 mmol/L (130mg/dL) (over 14 days)
  • Average Glucose of 6.5 mmol/L (117mg/dL) (over 2 days)
  • Standard Deviation 1.9 mmol/L (34 mg/dL) (over 14 days)
  • Standard Deviation 2.3 mmol/L (42 mg/dL) (over 2 days)
  • Median 6.2 mmol/L (112 mg/dL) (over 24 hours)
  • Coefficient of Variation 35% of Mean (over 2 days)
  • Time in Tight Range (3.9 – 7.8 mmol/L aka 70 – 140 mg/dL): 65%
  • Highs: 7 Lows: 11 (over 2 days)
  • GMI of 6.1% (over 2 days)

Let us now look at the results at the end of each day (screenshots taken just after midnight each night)

Day 1
Day 2
Day 3
Day 4

For the totals above, as can be read with a keen eye, all graphs are for 24 hours. The range is the Time in Tight Range (TITR) (3.9 – 7.8 mmol/L aka 70 – 140 mg/dL).

Comparing we see every measure (except the Median, especially on Day 3) has significantly improved. Highlights include:

  • Halving the Standard Deviation and Coefficient of Variation.
  • Taking my TITR from the mid-60s to the high 90s
  • Eliminating my lows (although I suspect they were calibration errors from a new sensor) and significantly reducing my highs (these were real).

For completeness, my weight stayed about the same, and my daily insulin requirement stayed about the same (84-79 units) as well. This second result genuinely surprised me as I assumed the sudden drop in dietary carbohydrate would lead to a much lower insulin need. I assume the difference in carb was offset by the increased protein and further amplified by the increased consumption of animal fats, raising my insulin resistance.

Did You Really Achieve Normal Blood Sugars?

Let us consider a study of the blood sugars of non-diabetics I mentioned in another recent post.

Lots of numbers here, so let me translate the key points for the average participant:

  • They had a mean value of 99 +/- 7 mg/dL (5.5 +/- 0.4 mmol/L)
  • Their standard deviation was 17 +/- 3 mg/dL (0.9 +/- 0.2 mmol/L)
  • Coefficient of Variation was 17 +/- 3 %
  • TITR was 93-98 %
  • Time in Super Tight Range (TISTR) (70 – 120 mg/dL aka 3.9 – 6.7 mmol/L) was 82-92%
  • Time below range was about 1.3% of the time

I only measured TISTR once during the four days which looked like this:

Where I measured 92% TISTR, beating the non-diabetic value of 90% and hit every range on the non-diabetic normal blood ranges.

The only measure I did not consistently hit was Mean Glucose on days two and three due to my morning coffee throwing out my values. By day four I had adjusted the coffee not to spike me so I think it is fair to say that, with improved experience managing the snacks and setting my pump to a more aggressive target (it was set to 5.4 mmol/L aka 98 mg/dL for the experiment but can be set as low as 4.4 mmol/L aka 80 mg/dL), given I had zero lows during the four days, it would not be hard to consistently hit this range as well.

Why Do You Say It Is Superior To Dr. Bernstein’s Approach?

In terms of the results I expect it is possible to get similar results with Bernstein but where I see this approach having the edge is:

  • Food management is MUCH simpler: Aussielent takes care of the main meals and you simply choose snacks which you like and which work for you. Compare this to Bernstein where you have to craft meal plans (he literally wrote a nearly 300-page book just on this topic alone), have no snacking, have to consider “forbidden” and “allowed” foods; it is a lot more work
  • Insulin management is MUCH simpler: Getting the looping pump to do the heavy lifting means I literally go for hours a day, not thinking about diabetes and I never need to “sugar surf” my way down. For the above results I did not even declare carbs or bolus; the loop took care of it. In the case of Bernstein, from Dave Dikeman’s video which I mentioned in my preparation blog, we learn he treats lows with glucose 1-2 times a day and, if he goes above 110 mg/dL (6.1 mmol/L) he uses an intramuscular shot of rapid acting Novolog. This is not including any R-insulin injections he does to cover meals, plus injections for basal and dawn phenomenon management.
  • Hormone fluctuation management is MUCH simpler. A good example of this is dawn phenomenon. For someone who is looping, the pump manages it overnight with no human intervention required. Here, Dr. Bernstein admits he and most of his Type 1 patients go up overnight and his solution is getting up, every night around 4am and doing multiple injections of different insulins which, to me, is a recipe for disaster.

The fact is the most recent edition of Dr. Bernstein’s book was written over ten years ago and a LOT has changed since then. It make sense the innovations which have come over the last decade, such as looping systems, can help us manage diabetes better and remove some of the mental burden of managing the disease.

The other big advantage of the Practical Diabetic Solution is there are still plenty of levers to pull for even better results e.g. the inclusion of exercise, bolusing and declaring if required, flexibility in snack strictness to suit the individual, augmentation of pump delivery with needle delivery etc. whereas, with Bernstein, it is so strict, there is, in my opinion, little room to move or to be creative.

Will I Be Continuing The Practical Diabetic Solution?

My position has not changed. To explain my position, I will again quote Dr. Bernstein adherent, Dave Dikeman: “I want to be normal…Not normal in that I can eat a birthday cake with everybody else but normal in that I want to have the same blood sugars as everyone else”. I respect this position but I simply do not share it. I see no reason why I cannot have a small slice of cake at the occasional birthday party, estimate the bolus and have the loop soak up the rest and my Solution allows for that. My goal is to minimise maintenance and maintain blood sugars enough to minimise the risk of complications, helped by regular check-ups.

Similarly, if I go to a restaurant, I do not want to pull out a meal plan meal and eat it while my family orders; I want to share in the experience with my family and experience the food as the chef intended. Food is an integral part of human social interaction, it is even in our language; the word “companion” comes from “someone who you break bread with”, “mate” comes from “someone you share your food (meat) with”, and to nurture comes from the concept “to feed”. To shun this link is to shun who we are.

Where I am likely to embrace the Solution is at breakfast, lunch and while travelling. Morning is a rushed affair in our house so a quick meal shake which I do not need to think too hard about is perfect. As I mostly work from home, I usually eat lunch alone so, again, a shake which will not spike me and make me a zombie in the afternoon, which is perfect. Conversely, if I go into work and my colleagues go out for lunch I will join them and leave the shake in the locker. Dinner is around a dinner table and shared with the family. This is sacrosanct for us and the Solution will not be part of it.

For travelling, the Solution is perfect. At conferences or, for example, all day workshops, there is often limited eating options and the options provided are often carby. A meal replacement shake is easy to carry with me and removes the issue.

What About You?

For someone looking for some stability in their numbers and piece of mind, consider the Solution. As mentioned here, the latest clinical thinking is an HbA1c below 6.5% or a TITR of greater than 50% is sufficient to avoid the risk of long term complications. Even if you just replace breakfast, you will likely be gluco-normal through the night (thanks to the loop) and up to lunchtime, which is already more than half the day i.e. more than 50% TITR. Anything above and beyond this is a bonus.

For the person aiming for normal blood sugars, the plan, as I followed it, is worth considering and the barrier to entry and exit are quite low as it does not require exercise, food plans, and kitchen overhauls (other than waiting a few days for the Aussielent or equivalent to turn up). If, like me, family dinner is important, you can “snack” on the elements which will not spike you which they are eating, while drinking your meal replacement (which is what I did this week). I literally saw stunning results by the first day so try it and, if you do not see improvement, move on.

Roadtesting An Approach “Better Than Bernstein”: The Preparation

Let me start by making it clear I am quite the fan of Dr. Bernstein. I have his books and have watched all of the Diabetes University videos on YouTube. If you are new to diabetes and want a foundation on the disease and how it works, his videos are a great place to begin. Dr. Bernstein took responsibility for his disease and came up with a solution which worked really well for him. He then published his method and a lot of people have success with it. However, the last version of his book published was over 10 years ago. A lot has happened in regards to technology, medications, and food options in that time so I thought it was worth exploring how to improve on his work for my own personal benefit and that of the diabetes community.

What Is Dr. Bernstein’s Diabetes Solution?

I had a quick browse through my copies of “Dr. Bernstein’s Diabetes Solution” and “The Diabetes Diet” but could not find a good summary of his approach. Diabetes Daily give some good context on the man and the solution which may be worth a read. In short, Dr. Bernstein’s goal is for people with diabetes to have “normal” blood sugars i.e. blood sugar levels indistinguishable from non-diabetics. His approach involves:

  • Low Carbohydrate (less than 30g/day) and high protein/moderate fats
  • Three meals per day, no/limited snacking, with each meal having effectively the same macronutrient profile each day
  • His starting suggesting is a breakfast with 6g carbohydrate, lunch with 12g carbohydrate, and dinner with 12g carbohydrate
  • He advocates regular exercise which promotes muscle growth, weight loss, and improves insulin sensitivity
  • “Insulin Hacking” i.e. intramuscular injections using rapid insulin
  • He is generally against the use of technology in his book, preferring multiple daily injections although concedes Continuous Glucose Monitors (CGMs) may have their uses (“If I were living alone, I’d use a CGM to protect from nighttime hypoglycemic episodes” – Diabetes Solution, p357). For pumps, Bernstein lists a range of advantages and problems on pages 330-332. Quotes include:
    • “Corrective injections are elegantly simple” – Diabetes Solution, p331
    • “Pumps can be set to automatically increase the basal delivery rate shortly before arising in the morning, thereby circumventing problems associated with the dawn phenomenon” – Diabetes Solution, p331
    • “Insulin pumps cannot be used to give intramuscular injections for more rapid lowering of elevated blood sugars” – Diabetes Solution, p331
    • “Contrary to a common misconception, they do not measure what your blood sugar is and correct it automatically” – Diabetes Solution, p332
    • If you have the book, check them out. For me, many of the criticisms of pumps equally apply to multiple daily injections over a prolonged period but decide for yourself

To see Dr. Bernstein’s Diabetes Solution in action, Dave Dikeman is a great example. He has been living with type 1 diabetes since the age of nine (he is now around 18 years old) and has worked closely with Dr. Bernstein, (I believe assisting with his YouTube channel) for many years. He presented his approach to Low Carb Down Under about a year ago. It is a great summary of how the solution works and shows someone achieving great success with it.

What Results Can We Expect From Dr. Bernstein’s Diabetes Solution?

Fortunately, Dr. Bernstein published the results of people dedicated to his approach five years ago. Key results were:

  • A survey was conducted on members of the Facebook “Typeonegrit” group with 316 respondents, a group of “type 1’s and parents who follow Dr. Bernstein”
  • Average time following Dr. Bernstein’s Diabetes Solution was 2.2 ± 3.9 years
  • Mean daily carbohydrate intake was 36 ± 15 g
  • Average HbA1c was 5.67% ± 0.66%
  • 2% of respondents reported diabetes-related hospitalizations in the past year

My Current Approach And How It Compares

Using the Bernstein summary as a prompt, here is my current approach:

  • “Low-ish” carbohydrate: I do not count carbs but estimate I eat maybe 100-150g per day
  • I generally have a white coffee for breakfast, nothing regular for lunch (sometimes food, sometimes snacks, sometimes nothing), and dinner with the family which usually has no more than 50g per serving, but this is not a hard rule
  • Snacking happens when I want. It is small and I do not give it too much consideration
  • Little to no exercise
  • I use a commercial looping pump/cgm. No injections, no finger pricks
  • I do not declare any carbohydrates, do not bolus or boost; the loop takes care of it

In terms of the results I am getting, I have been looping for close to 12 months and my last HbA1c was 5.5%. Given I am not following Dr. Bernstein’s Diabetes Solution at all and getting superior results to the average participant in the Typeonegrit survey, over a shorter period of time, perhaps there is value in assessing a hybrid approach for even better results.

Simplifying Food

A big part of any summary of Dr. Bernstein’s Diabetes Solution involves the listing of forbidden and allowed foods. In the Diabetes Daily summary mentioned above, of the 5,700 words, 4,500 describe which foods can and cannot be eaten. That is over 3/4 of the description. In Dr. Bernstein’s Diabetes Solution, chapters 9, 10, 11, and 25 (roughly 120 pages out of 460 pages or a quarter of the book) cover food and its management. I think it is fair to say food management is a big part of Dr. Bernstein’s Diabetes Solution.

Two years after the last version of Dr. Bernstein’s Diabetes Solution came out, a company called Soylent appeared offering nutritionally complete meal replacements for time-poor people who do not like cooking. Other companies offer similar products, including Aussielent which also offer a low carbohydrate alternative (shown below).

A serving provides about a quarter of the body’s micro-nutrients. For macro-nutrients a serving provides:

  • 1700kJ (406 Cal)
  • 30.4g Protein
  • 26.9g Fat
  • 7.1g Carbohydrate (excluding fibre)
  • 5.4g Fibre

So, in theory, four servings a day will provide all the micro-nutrients the body needs. It passes the “less than 30g of carb per day” test of Bernstein and gives a total energy of 6,800kJ (1,624 Cal). The average adult requires between 8,700kJ – 10,500 kJ (2,000 – 2,500 Cal) per day to maintain a healthy weight (https://www.healthdirect.gov.au/kilojoules, https://www.nhs.uk/common-health-questions/food-and-diet/what-should-my-daily-intake-of-calories-be/) so we have a deficit of at least 2,100 kJ (500 Cal). Also, the packet is clear in saying “Not to be used as a sole source of nutrition”. So, we can embrace the energy deficit and lose some weight or use it for snacking. As long as the snacks do not spike us we are good to go. There are plenty of foods which, as people with diabetes, we know we can eat without spiking. For me, I will be eating things like:

  • Home made protein balls (about 735 kJ/175 Cal each)
  • Cheese and crackers (516 kJ/125 Cal)
  • Water Chestnuts and Soy Sauce (about 190 kJ/45 Cal)

Drinks will be sugar free so it will be diet soft drinks, mineral water (soda water), sugar free cordial, and tea/coffee.

I also only have enough Aussielent for four days so this will be the length of the experiment.

Exercise

There is no doubt exercise is good for anyone. I will not be changing my routine for the next four days though. Clearly, if there was a desire to make this a long-term venture, introducing exercise would be good. Keeping this as=is also removes it as a confounding variable in the results.

Measuring and Administering Insulin

I have no doubt the use of a CGM and a Pump, with looping, have been a big part of my success to date. The pump is watching my blood sugars every five minutes and making adjustments to move my levels towards my target (currently 5.4 mmol/L or 97 mg/dL). Unlike Dr. Bernstein’s Diabetes Solution, which relies on basal insulin (sometimes delivered in the middle of the night to counter dawn phenomenon), and injecting insulin into muscles, my loop has no reliance on me being awake, or “insulin hacking”.

Looping was not available when the last edition of Dr. Bernstein’s Diabetes Solution came out which is why he says “they do not measure what your blood sugar is and correct it automatically”. Today, they can, and are very, very effective at managing overnight and hormonal fluctuations.

How Will I Measure Success?

My plan is to document my baseline in this blog and then review afterwards and see what has changed.

Current weight: 112kgs (246 lbs)

Last Daily Insulin Amount: 84 Units

Diasend (https://diasend.com/)

  • Average glucose: 7.2 mmol/L (130 mg/dL)
  • Standard Deviation 1.9 mmol/L (34 mg/dL)
  • Time in Tight Range (3.9 – 7.8 mmol/L aka 70 – 140 mg/dL): 65%

Sugarmate (https://sugarmate.io/home)

  • % in Range (daily TIR 3.9 – 10 mmol/L aka 70 – 180 mg/dL): 69%
  • Time Below Range: 7% / Time In Range: 67% / Time Above Range 26% (TIR)
  • Average 6.5 mmol/L (117 mg/dL)
  • Standard Deviation 2.3 mmol/L (41 mg/dL)
  • Median 6.2 mmol/L (112 mg/dL)
  • Coefficient of Variation 35% of mean
  • Highs: 7 Lows: 11
  • GMI: 6.1%

Tidepool (https://app.tidepool.org/)

1 week values

  • Time In Range (4.0 – 10.0 mmol/L aka 72 – 180 mg/dL): 88%
  • Time Above Range: 9.3%
  • Time Below Range: 3%
  • Average Glucose: 7.2%
  • Standard Deviation: 1.9 mmol/L aka 34 mg/dL

Notes:

  • The lows are due to poor readings of the CGM on insertion, as confirmed by finger pricks (the only time I do them). For me, the G6 sensor reads low for the first few days after insertion
  • Variation between the reports is generally due to differing periods of review. For Diasend it was the last week of data, for Sugarmate it is written on the measure (some say 2 days even though I specified 3, I am not sure why this is the case), and Tidepool was one week.

Are You Planning To Continue With This Approach?

Only so much can be demonstrated over four days. My primary reason for doing this is to see if Aussielent meals are a viable option when I am travelling for work as I have less control over what I eat when at conferences or onsite with clients. Carrying some powder and olive oil while travelling is a relatively simple solution. However, if I can also develop some preliminary data combining looping technology and a very-low carbohydrate diet, this may be worth more analysis later either by me or other people curious to try different approaches.

I actually have no interest in pursuing a very-low carbohydrate regimen long term. The primary goal of Dr. Bernstein’s Diabetes Solution is normal blood sugars. My goal is to minimise maintenance as much as possible to reduce the risk of burnout i.e. a sustainable approach, and to minimise the risk of long term complications (which is not quite the same as normal blood sugars). What I mean by this is maintaining a sufficiently low HbA1c that clinical evidence suggests I am close to the same risk of long term complications as a non-diabetic and getting regular check-ups is enough for me; I do not need to obsess about every spike or deviation.

Also, I like going out to restaurants and eating meals as the chef intended; I enjoy eating in moderation, rather than fixating on forbidden and approved foods; I enjoy spending literally hours a day not thinking about diabetes management. I see no compelling reason to change any of this.

Where To From Here?

For the next four days, I will be following the “Improved Solution” and writing about it next weekend. I will also be getting blood work done towards the end of this week as I am seeing my endocrinologist soon. This will give me additional results which I will publish later.

ATTD 2023: What Is The Right Time In Range?

I had the privilege of being a Dedoc Voice in Berlin at ATTD 2023 this year. While there were many fascinating discussions (many of which I Tweeted about at PracticalDeeb) there was one in particular that really stood out and that was a frank and open discussion on the clinical relevance of Time in Range and whether it needs revising.

For those who want to cut to the chase, there is a tl;dr at the end.

What is Time In Range (TIR)?

Before launching into the presentations at ATTD, it is probably best to explain the term Time In Range. Thankfully, I have already written a piece explaining it, using a presentation from EASD 2020 by Professor Pratik Choudhary (who was my t-shirt hall of fame recipient for the conference).

In short, the default standard is the range 70-180 mg/dL (3.9-10 mmol/L) and the traditional target was to reside within this range for more than 70% of the time, as measured by a Continuous Glucose Monitor (CGM).

This presentation at ATTD 2023 put the target under the microscope to see if it needed revising.

Time in Tight Range: The New Standard?

Professor Thomas Danne introduced a concept of a Time in Tight Range (TITR) which reduces the range to 70-140 mg/dL (3.9-7.8 mmol/L). Why a new range? Because Professor Danne literally said “I don’t want to lie any longer”.

The suggestion was, to live a normal, healthy life, 70% TIR was not enough but to give truth to what needs to be achieved would discourage when encouragement was needed so a “soft target” was given instead. This admission will vindicate many online pundits who rail against TIR as insufficient to avoid complications. In essence, this has now been confirmed.

An advantage of considering TITR is spikes, which may remain within TIR but not TITR, can be identified and worked on, assuming managing levels within TIR has been achieved.

It is interesting to note that Professor Danne considered 70-140 as “normoglycemia” i.e. normal blood sugars and above 140 as “dysglycemia” (not normal blood sugars) and therefore concluded TITR can also be used as a range for early detection i.e. Stage 2 Type 1 Diabetes (when blood glucose levels are not normal but insulin is not yet being used). Professor Danne also cited a paper that concluded that time above the tight range predicted the progression to Stage 3 Type 1 Diabetes i.e. when insulin is required.

Professor Danne went further and stated he felt the latest ISPAD Time in Range guidelines do not go far enough, claiming the life expectancy of a child with type 1 diabetes will not be the same as a child without type 1 diabetes using these targets.

His preferred goal? An ambulatory glucose profile characterised as “Flat, Narrow, and In Range” (FNIR).

The Gritters can raise a glass of alcohol-free, non-fizzy coconut milk and celebrate that academia is beginning to align to their strict goals. So did Professor Danne go on to talk about all people with type 1 diabetes adopting an ultra-low carbohydrate diet, and eating a strict three meals a day? Well, no.

As alluded to earlier, his goal is to provide guidance to people with diabetes and their carers which is considered achievable and sustainable, even if this means historically softening the targets. Also, Professor Danne made it clear a qualitative daily target was insufficient but a SMART (Specific, Measurable, Achievable, Relevant, and Time-Bound) goal was also needed i.e. quantitative as well as qualitative. His solution? Automated Insulin Delivery i.e. Looping.

His evidence that AID leads to improved results? A comparison across countries of HbA1c pursued through various means compared to Time in Range pursued through AID. Even in the best performing country (Sweden) people with type 1 diabetes struggled to get an HbA1c below 7% (50 on the scale). However, all countries consistently achieved a TIR above 70% which is broadly equivalent to an HbA1c of 7% using AID.

But are we not considering TITR, not TIR? Alas reporting on TITR is still quite limited but Professor Danne is hopeful. On top of using AID, he also mentioned the results being achieved with SGLT2i drugs (which basically redirect glucose in the blood to the bladder, keeping blood glucose levels low).

The jury is still out on the use of SGLT2i’s in people with type 1 diabetes because of the increased risk of eDKA but Professor Danne is hopeful, the rise of continuous ketone sensors will address this. For someone like me who still has residual pancreatic function, the use of an SGLT2i is more compelling because the residual insulin means any form of DKA is extremely unlikely.

More evidence of the superiority of AID over other methods came from a Cambridge study which showed improved sustainable performance over two years.

Doctor Peter Adolfsson continued the story by presenting on the specifics of what those SMART goals should be.

First he talked at what normal blood sugars in children look like where the TITR is close to 90%

A more recent study with more accurate CGMs puts the number at 96% TITR

Doctor Adolfsson then moved the discussion to what target do we need to achieve, not to match people without diabetes, but to reduce the risk of complications to match the non-diabetic population and suggested an HbA1c of 6.5% was sufficient for this which corresponded to a TITR of 50%. This comes close to the conclusions I came to a while ago that an HbA1c under 7.0% is good but, if it can be achieved without severe hypo risk, an HbA1c of 6.4% is better.

tl;dr

Professor Danne acknowledged that, historically, advice to people with type 1 diabetes had been targets which still exposed them to long term complications because it was simply too hard and arduous for the client to achieve tighter targets i.e. the goal was harm minimisation rather than elimination. However, the advent of Automated Insulin Delivery (AID) / Looping has meant it is much easier to achieve superior results with minimal additional effort.

This has led to the consideration of the Tight Time in Range (TITR) which puts the goal for glucose levels to be between 70-140 mg/dL (3.9-7.8 mmol/L). This new range has the potential to be diagnostic of the stages of type 1 diabetes as well as provide improved guidance for glucose control.

In terms of the percentage of time to aim for in the new range, for truly normal blood sugars, the target is 96% of the time. However, there is no evidence that can be achieved through AID. The compromise target is to aim for a percentage which reduces the risk of complication to that similar to the non-diabetic population. Research suggests this lowers the target percentage to 50% TITR which corresponds to an HbA1c of 6.5%.

In other words, rather than pursue the goal of “normal blood sugars”, the goal is “free of long term complications”. What I personally like about this approach is TITR can be measured, at home, by anyone with a CGM (unlike HbA1c). Also, the individual can choose how strict they want to be in pursuing “normalcy” i.e. sit at 50% TITR and minimise the risk of complications or go harder to achieve the blood glucose levels of a person without diabetes. This latitude in the percentage allows flexibility in terms of the individual’s personal circumstances which, in turn, minimises the risk of burnout.

Insulin Cooling Battles: Breast Pads vs Breezy Packs

This is part of an on-going series where I compare different technologies available for keeping insulin cool so it does not spoil.

Previous battles were:

In this battle I compare Breezy Packs to breast pads.

Why Breast Pads?

It may seem like a curious choice but there is method to it. In “Frio vs Breezy Packs” I mentioned that Breezy Packs use Phase Change Materials (PCMs) to maintain the internal temperature. For a rundown of the physics on how they work, head over to that post.

While the specific material used in Breezy Packs is a trade secret, one candidate substance is octadecane whose melting point is around 28C (82.5F). While not listed on the box, on eBay the listing for the breast pads had octadecane as one of the main ingredients. For $20 it was worth a shot.

Sure enough, on touching the pad there was a cooling sensation so things were promising.

The Setup

For Breezy Packs, I used their smallest size and put one of my Ozempic pens inside with a digital temperature sensor embedded within it.

For the breast pads, I used a mesh pencil case I had picked up and layered the breast pads inside with another pen with a sensor between them.

In the image you only see the pads on one side but I did put eight on one side and eight on the other for the experiment.

A third sensor was used to track the oven temperature.

With the two containers on a rack on an oven tray (I did not want the tray to be in direct contact with the containers) I placed them in the oven and took the temperature around every five minutes until one of the containers went past 30C (86F).

Prior to entering the oven, the breast pads consistently measured a lower temperature than the Breezy Pack. I assume this was because of the higher area of contact between the pads and the insulin pen. However, things changed when the oven became involved.

The Results

While the breast pads initially showed a lower temperature, this soon changed. Both were pretty stable but, at 17:15, the temperature of the oven was continuing to fall and was heading towards 30C so I increased the dial by a small amount. The different response can be seen with the breast pads increasing temperature much faster than the Breezy Pack and eventually hitting 30C. In fact, over 40 minutes, the breast pad temperature went up by 7C (12F) compared to 2C (3F) for the Breezy Pack.

Conclusions

Breezy Packs wins again although I suspect if we used a similar volume/weight of breast pad PCM the result may have been different. This being said, the amount of breast pads needed to achieve this would be excessively expensive. As with previous experiments, the components were fully funded by myself without commercial sponsorship of any kind.

Grieving Change and Adopting Night-time Insulin

I had my six-monthly meeting with my Endocrinologist this week and it was clear the atmosphere was a little more formal than usual. Looking over my blood results he asked “Where do you want to start?”. Getting straight to the point I indicated the HbA1c number to which he replied “6.6%”.

This came as quite a shock as, for the five years since diagnosis, I had been 6.1% or less. The number had drifted up slightly in the last few results but this was quite the jump. “Well that’s it”, I concluded, “it is time to get onto the good stuff” which, in this case, meant insulin.

Set Your Goals and Limits Early

Back in November 2019 I had written a blog on what levels a person must maintain to limit damage and the risk of long term complications. My conclusion had been an HbA1c over 6.4% significantly increased the risk of complications and, once I reached this mark, it was time for insulin. That time had come.

I cannot recommend highly enough setting these kinds of personal limits early in your diabetes journey. Talk to your health team, review the literature as I did and create your own lines in the sand. When the time comes, they will serve you well because it is only natural to try and maintain the status quo when, in fact, change is necessary. Let your past self guide your present self so you can both look after your future self.

Grieving the Loss of Familiarity

I am a firm believer people go through grief when faced with significant changes in their life. The move to using insulin while not a big deal in itself, is such a change. While my other medications are to slow the progression of the disease and will no longer be needed in the future, the move to insulin is, in all likelihood, a permanent one.

The grief felt is, I believe, the grief of losing familiarity, of entering a new normal and the adjustments which come with it. In fact, the Kubler-Ross Grief Stages have been modified for chronic disease to cover this very concept.

In reviewing my HbA1c it was tempting to defend the result by considering the large error margin that is inherent in the HbA1c measurement (Denial) but, thanks to my regular reporting for my endo, I knew this result was consistent with the trend of my numbers heading upward and unlikely to be an outlier.

Without my line in the sand of 6.4% it would have also been tempting to give it another, say, six months, resisting my endo’s recommendation for insulin intervention and see where the numbers landed, doing my best to exercise more and eat less sugar in the interim (Pleading, Bargaining, and Desperation) but past Leon had prepared for this day allowing me to move past the second stage, reconciled by evidence over emotion.

There was a little Anger at myself for not doing more e.g. more exercise and less candy but, in reality, the immune system always wins. Five years of insulin independence was a remarkable achievement and it is mentally much healthier to focus on what was achieved than what was not.

There was also a little Depression that the inevitable had arrived along with small feelings of Loss of Self but, again, equipped with the knowledge that this was always going to happen helped me get past this. While there may still be some lingering feelings of this (while I write this it has been three days since I saw the endo), it is time to accept the next stage of my journey.

Acceptance and the Road Ahead

I had put on a sensor in the weeks leading up to the meeting with the endo so we had good information to guide us on where the high sugars were.

It is clear in the trace that from around 9pm at night my numbers go up and slowly drift down until morning. It is also clear that this drift sits around 7 mmol/L (126 mg/dL) and should probably be closer to 5 mmol/L. I remember when I was first diagnosed my blood sugars would sit in the 4s outside of meals but I have not been there for a very long time. This night-time elevation is where we decided to target the levels.

Long Acting Insulin

I spoke about the two main roles of insulin back in 2019. In short, if you are not eating, your levels should be reasonably flat and towards the bottom on the standard range e.g. 4.5-5.5 mmol/L (80-100 mg/dL). If the levels are not behaving like this, it is likely the body is struggling to keep the liver’s glucose release in check. For multiple daily injection, this is the role performed by long acting insulin.

As neither I nor my endo know exactly how much insulin is needed to flatten the overnight curve, we are starting conservatively: 2 units of Levemir taken at around 9pm and monitored once in the middle of the night (checking I am not too low), and once in the morning to see if I am between 4.5 and 5.5 mmol/L.

After one week I will see how it has gone and, if I am not getting down low enough, I will increase the dosage by another 2 units, monitor for another week, rinse and repeat.

There are a few long-acting insulins available but Levemir is useful for my specific purpose because it has peak activity for 12 or so hours which matches the period of time I need it for.

The New Normal

This is now my new normal; injecting once at night and for now, monitoring levels twice per day until I get the dosage right. My new goal is to reduce my HbA1c to a healthier level (sub-6% without hypos would be ideal) and if I can do this without the need for mealtime insulin, even better. Of course, if I continue to have an HbA1c above 6.4%, additional measures will be required. Again, the measures I have set for myself, informed by my own investigations and supported by discussions with my health care team, will guide me and allow me to keep a level head no matter what happens.

Generating A Report For Your Endo

I thought I would go through the report I generate for my endo before every visit and the tools I use to create it.

Tool 1: Microsoft Word

All the graphs and tables I generate I put into Word and then save to PDF for emailing.

Tool 2: Nightscout (OOB Reports)

If you are unfamiliar with Nightscout it is, essentially, a web site which shows your CGM’s glucose readings. Very useful for allowing others to review your levels, and used in some looping setups.

For more details on Nightscout, go here. It all might sound technical but the automated scripts make things really easy and no coding knowledge is needed. Also, all the tools it uses are free.

It also comes with a report section which can generate a Glucose Distribution Graph. Generally I select three months for my graphs even if I have not been wearing a CGM for the whole time. This is what the graph looks like.

I am pretty happy with this. Using the conventional TIR range (3.8-10/70-180) I am 93% in range. Given I have not been particularly strict over the last three months, I am good with this. My predicted HbA1c is 6.0% which is creeping up but, given my pancreas is slowly being destroyed by my immune system, this is not overly surprising. Hopefully the blood tests will reflect a similar HbA1c when I get the results back.

Nightscout also has a Glucose Percentile report showing the spread of values over the day.

Looking at the highs, the areas of interest are night time (around 8pm – 1am) and lunchtime (2pm). In both cases it is likely poor food choices which are to blame. Maybe choosing less carby options at lunchtime will help and maybe I need to be more judicious in my late night snacking.

Tool 3: Nightscout Reporter (https://nightscout-reporter.zreptil.de/)

For this tool you will need Nightscout set up. Assuming you have Nightscout in place, you go to the Nightscout Reporter site, give it the web address of your Nightscout site and it does the rest. It also generates a table with similar information to the first graph.

To the casual observer, the “Lowest value in the period” at 1.7mmol/L (30mg/dL) may seem something of concern but this was simply a bad reading from my CGM; it is either a “compression low” (sensor giving a low reading by being squashed) or a worn out sensor giving nonsense readings. Being insulin independent it is impossible for me to go that low. The lowest I have ever been is around 3.5mmol/L (63mg/dL).

The Nightscout Reporter also has a Glucose Percentile Report but, as it is essentially a repeat of the same report from Nightscout reports, you only need one of them.

The next report I include in my report to my endo is the Comprehensive Glucose Pentagon. It is a spider graph of five parameters us people with diabetes need to keep an eye on and compares it to the typical values for a Muggle (non diabetic person).

For me, the outlier is the CV %, the variability in my glycaemic values. Again this suggests maybe less sweet treats and more lower GI options.

Finally, the Nightscout Reporter gives us a distribution graph of glucose values.

This also gives us a good indication of where our numbers sit.

Medications and Questions

Finally in my report to the endo I include a list of my medications and supplements, and any questions I have. Given my questions often involve new medications or protocols it seems fair to give my endo some notice before meeting them so they can do some research beforehand.

Longitudinal Analysis

The other benefit of generating these reports is I can review the results over time. For example, here are the results of my glucose distribution for 13/08/20-13/11/20, 17/06/21-14/09/21, and 12/12/21-12/03/22

13/08/20-13/11/20

17/06/21-14/09/21

12/12/21-12/03/22

If we look at the “Values above 10.0mmol/L” (180mg/dL) we see this is slowly increasing but still substantially less than the 25-30% guideline.

While the standard deviation is the same, the GVI is increasing suggesting less blood glucose control, but still in the “good” range.

Average glucose is also rising over time.

All of this is consistent with a LADA’s slowly deteriorating pancreas. The question will be when do I start looking at additional interventions, such as insulin? As per my analysis on when damage starts to accumulate, I am happy to let things progress until my HbA1c gets closer to 6.5% but this is also a good subject to discuss with my endocrinologist at my appointment.

My Fifth Diaversary, Why I Celebrate It, And The Health Benefits Of A Carb Blowout

This week was my fifth diaversary. It is a word you will not find in the dictionary and is used exclusively in the diabetes community. In short, it is five years since I was diagnosed with Type 1 diabetes.

It may seem a strange thing to celebrate, the acquisition of a chronic, damaging, sometimes fatal disease but it is important, at least to me.

To celebrate I went all out with Italian:

  • Half of a 14″ meat-lovers pizza
  • 4-inch square of lasagne
  • half a garlic bread roll
  • single serve of tiramisu

A nightmare to manage for most Type 1s. Being a honeymooning LADA, albeit an insulin-independent one, helped although I still spiked, peaking at around 12.2mmol/L (220mg/dl) and then headed down.

So why subject my body to such a stress? Because sometimes it is the healthiest thing you can you do for yourself.

My Usual Eating Routine

I characterise my diet at “lowish carbohydrate”. Where there is an obvious, practical low/no carbohydrate alternative to a food, I will eat it. I do not drink sugary drinks, opting for the ‘diet’ alternatives. I am very comfortable with sugar substitutes such as phenylalanine and sucralose. As a general rule I try to make sure anything solid I eat has 10% net carb or less and, for liquids, zero carbs. That is it.

The result, when I stick to this, are blood glucose traces like this.

The thing is, even with these relatively light rules, it still requires commitment and effort to maintain. If I am eating out, I need to scan the menu for the friendliest options. I need to make sure, if I order a soft drink, that the diet version has been served and not its sugar-filled cousin and so on.

Other Common Eating Regimens

Other common eating regimens for people with diabetes are even stricter. If we consider Bernstein’s approach we are eating:

  • 30g of net carb or less per day
  • Roughly the same amount of carb every day for breakfast, lunch, and dinner e.g. 6g, 12g, 12g
  • Eating at roughly the same time every day

That is a lot to keep on top of and while I am sure the ‘Gritters’ will say it is not a big deal and worth it because “we deserve normal blood sugar levels” there is no doubt it does require effort and will impact social interactions with those not complying with this routine.

The strictest of all is probably the zero-carb carnivore diet. This pretty much speaks for itself; if it was not once part of an animal (or is a drink with practically no calories) it is off the list.

At the other end of the spectrum we have the Forks Over Knives advocates, where eating involves a “plant-based diet”. In short a “small v” vegan diet where no foods are off-limits but some (those from animals) are to be avoided.

This one is relatively friendly and, for those looking to reduce insulin resistance the benefits of avoiding animal fats may outweigh the additional carb intake.

Whatever system that is followed, assuming a person with diabetes is adopting some kind of food management, rules mean conscious effort.

The Risk To Mental Health

Orthorexia nervosa is defined as “an unspecified feeding or eating disorder characterized by an exaggerated, unhealthy obsession with healthy eating”. “The affected individual might be driven by dietary asceticism, cherry-picked evidence, or even by evidence-based recommendations, leading to a restrictive dietary pattern in pursuit of improved health”. Overly strict diets which individuals religiously follow, and myths about the food we eat feed, reinforce this kind of unhealthy thinking.

Another aspect is willpower (also known as volition) is a finite resource. A person can only perform conscious actions for so long before they need to take a break. A person with diabetes is ‘on’ 24-7 (except possibly the closed loopers but they are still the exception rather than the rule). They know that maintaining their blood sugar is necessary to stay alive and stay healthy. So what happens when they run out of willpower to manage their disease? Diabetes Burnout. They simply stop managing the disease because they need to take a break.

Obviously there is a lot more to managing diabetes than food intake but it certainly contributes and can be overly burdensome when it becomes all-consuming.

Food Myths Which Contribute To Orthorexia And Diabetes Burnout

There are a few myths when it comes to blood sugars and food which focus on 140mg/dl (7.8mmol/L)

“Damage Starts Happening When Your Blood Sugar Goes Over 140mg/dl”

I tackled this in a previous blog. In short, there is no evidence that damage begins over 140mg/dl. There is literally no study which has examined people with blood sugars at 141mg/dl and observed cellular damage occurring. It is a myth used to sell books but has no basis in scientific fact. It is true that having a sustained high blood sugar will do damage in the long term but this is better measured through metrics such as the HbA1c or Time in Range (TIR).

“Muggles (Non-Diabetic Folk) Never Go Above 140mg/dl”

This is simply not true. A recent article gave a great summary of some of the research that has been done in this area. Here are quotes from the studies examined:

  • Muggle Study #1: “On average, their daily glucose levels stayed between 70–140 mg/dl for 93% of the day, with very small portions of the day spent above 140 mg/dl or below 70 mg/dl”
  • Muggle Study #2: “Levels were lower than 70 mg/dl for 1.7% of the time and greater than 140 mg/dl, only 0.4% of the time.”
  • Muggle Study #3: “Participants spent 93% of time between glucose values of 70-140 mg/dl, with 3% of the time below 70 mg/dL on average and 4% of the time above 140 mg/dl on average”
  • Muggle Study #4: “2.1% of glucose sensor values were >140 mg/dl”
  • Muggle Study #5: “Glucose was above 140 mg/dL for only 0.8% of the day”
  • Muggle Study #6: “Participants spent 1.6% of the time above 140 mg/dl”

Literally every study showed that while going above 140mg/dl was the exception, even Muggles do it for short periods of time every day.

In other words, not only are these myths untrue, anyone believing them is putting themselves under unnecessary mental stress for effectively no discernible gain.

Diaversary As A Mental Steam-Release Valve

This is why I celebrate my diaversary. My diaversary is a day when I give myself permission to not to be as concerned with my blood sugars, secure in the knowledge that one day of spiking is going to do little but give me a mental break and help me recharge for the other 364 days. I genuinely believe the one day of poor bloods is a small price for sustained mental wellbeing. While maintaining healthy blood glucose levels is important, so is managing my mental health. My diaversary is a key element in my approach.

Insulin Cooling Battles: Frio vs Breezy Packs

My previous battle, Frio vs Gel, showed that while a gel pack slows down the transfer of heat, it has no power to stop that heat energy eventually reaching the contents of the pouch. In contrast, the evaporation of the water from the Frio pouch actively fights the heating of insulin by redirecting the heat energy to converting the water from a liquid to a gas.

In this battle, we have two related, but different technologies which both redirect the heat energy to perform other tasks than heating the pouch contents. As mentioned, for the Frio pouch, it is the conversion of water to steam and, for the Breezy Pack, it is the melting of a mysterious substance called a PCM (Phase Change Material).

What are PCMs?

We know from high school science that, in the everyday world, matter is in one of three states: solid, liquid, or gas. What we may not know is, to move from solid to liquid, or liquid to gas takes energy. The scientific term for the energy required to melt a substance is the “Heat of Fusion” or “Enthalpy of Fusion” and it is measured in energy per weight e.g. kJ/kg or energy per volume e.g. MJ/m^3.

The energy needed to evaporate a substance is called the “Heat of Vaporization”. It turns out the energy needed to evaporate water is really high. It literally takes five times the energy to get water to turn to steam once it reaches boiling temperature than it takes to take water from ice to that temperature. So, if you have a kettle or heater which can get your water to just under boiling temperature, and that serves your purposes, do so because you will save a LOT of money on energy bills.

So, in the case of our Frio pouch, the PCM at play is water going from a liquid to a gas. While water does boil at 100C (212F), even at 30-40C (86-104F) we get some cooling effect because the water molecules in the Frio pouch are at a range of energy levels so a little heat energy can tip some of these over to becoming a gas at these lower temperatures. This is why we may see a little steam, even before the water is boiling.

In the case of Breezy Packs, the makers do not reveal what the PCM substance is but we can make an educated guess.

What is the PCM in Breezy Packs?

This is what we know:

  • The substance is solid below 25C (77F) and turns to a liquid above this temperature. We know this from the instruction sheet.
  • From the Breezy Pack website, the substance begins to melt above 27C (80.6F)

Going to Wikipedia, we have a range of common PCMs. Assuming the manufacturers have gone for an inexpensive PCM whose melting point is somewhere above room temperature and below the fail temperature for insulin (around 30C/86F) the obvious choice is Sodium Sulfate, maybe with some salt added. At US5c/kg, it is the cheapest PCM in the table, after water. You will notice below that pure Sodium Sulfate melts at 32.4C (90.3F) but, adding a little salt brings this down to a lower temperature. I have bought some pure Sodium Sulfate to experiment with and see if I can replicate the Breezy Pack but that is for another post.

The Experiment

As with the Frio vs Gel experiment, I have enlisted the help of my oven to maintain an even temperature. While I used the middle shelf and the fan forced setting last time, I was finding the oven was going above 46C (115F) which I did not want so I put the Frio and Breezy pouches on the lower shelf with only the top element on. I also put a dishcloth on the middle shelf to act as a shield from the direct heat of the heating element. I also put the two pouches on two plastic cutting sheets to prevent contact with the metal bottom.

The wires were linked to digital sensors so I could monitor the temperature.

The blank one is the temperature of the oven.

The Breezy Packs, at the time of writing come in two versions: Breezy Basic and Breezy Plus. Both of these are the same physical size but the Breezy Plus contains more PCM so it can work for longer. This experiment used a Breezy Basic. The Frio pouch was the same one as I used in the Gel comparison and was soaked in water for the same amount of time prior to going into the oven i.e. 5 minutes. The only difference was the temperature of the water used which, in this case, was room temperature and not, as last time, from the cold tap.

The Results

So, for an oven where we the temperature is between 35-40C (95-104F), we see that the Frio took around 15 minutes to go from 25C (77F) to 30C (86F). In contrast, the Breezy Packs only moved 1.5 degrees Celsius over the same time period.

The rapid rise in the Frio surprised me as it took twice as long to move the temperature the same distance but, even if we use the Frio vs Gel pack results for considering the Frio pouch, we see that it is still out-performed by the Breezy Pack. My guess is the sensor in the Frio pouch was closer to the outside this time around and, therefore heated up quicker. An alternative explanation could be the difference in oven temperature from last time changing the performance of the Frio pouch i.e. the oven ran a little hotter, although more consistently this time around than last time.

Conclusions

To my initial surprise, the Breezy Pack strongly outperformed the Frio pouch. In hindsight, this makes sense. If we think about it considering the PCM in each case, for water, most of the water molecules are still too cold to transition to a gas state and, therefore the heat energy is simply used to warm the material. For the Breezy Pack though, the majority of the molecules are close to melting and will more heat energy can be redirected away from heating the pouch.

Given the Breezy Pack requires no soaking, is not damp and simply works and given the price point for both the Frio pouch and Breezy Pack are similar, it seems clear the Breezy Pack is the superior option between the two when carrying a couple of pens.

Please note: I bought all pouches with my own money and have received no financial benefit in this comparison. This being said, I am very, very open to receiving sample pouches if either Frio or Breezy Pack want me to compare different sized models in the future 😉

Insulin Cooling Battles: Frio vs Gel

David Burren recently put me on to Breezy Packs which, if their claims are to be believed, offer a new way to keep insulin cool in the field. I have ordered a couple of Breezy Packs to put them through their paces but, first, I thought I would try out the existing methods commonly employed to show how they work.

Gel

Gel packs contain gel (no surprise there) which holds its temperature well and acts as an insulator. There is no actual cooling mechanism here other than the gel slows heat passing from one side to the other. So, to use a gel pack, you cool it down in the fridge (not the freezer as insulin does not like to be frozen) and put your insulin inside it to protect it from outside fluctuations in temperature. Outside heat is slow to heat up the gel pack which means the insulin stays cold.

Frio

Frio is, arguably, the most popular brand name for evaporative cooling pouches for keeping insulin cool. There are other brands out there (I even sell a version in my Etsy store) so feel free to shop around. They all work in the same way though. You immerse the pouch in water for, say, five minutes and it puffs up. You take it out of the water, wipe it down and put your insulin inside.

Not only are the pouch contents (generally silica gel beads or similar) an insulator but they are spectacular at absorbing and holding on to water. How Frio bags work is, when exposed to a warm temperature, the water in the beads begins to evaporate but evaporating water molecules takes energy so, instead of the external heat being used to raise the temperature of the water, some of it is used to turn the water to steam. This means the water temperature stays reasonably stable and, in turn, so does the temperature of the insulin inside the pouch. Our bodies use the same trick to stay cool when we sweat.

Breezy Packs

Breezy Packs offer a new way to keep insulin cool, which is similar to Frio bags but, instead of absorbing energy, turning water from liquid to a gas, it converts its active material from a solid to a liquid. No need to soak and wipe down. The physics of Breezy Packs is actually very smart so I will save it for when the pouches arrive and I will write another blog on the subject.

The Cooling Battleground: My Oven

It turns out that I can get my fan-forced oven down to around 30-40 degrees Celsius (104 degrees Fahrenheit) so this was my “controlled environment”. The contestants were a small Frio pouch capable of holding two insulin pens and a massive pillow gel insert.

The insert is 30x40cm with three panels. Both pouches went onto an oven tray with baking paper underneath to try and insulate from the metal bottom.

The gel pad was folded into three with two of the panels at the bottom and both pouches had a temperature probe put in the middle of them. As indicated above, the gel pad had been stored in the fridge whereas the Frio was soaked in tap water.

Once in the oven, I monitored their temperature and the temperature of the oven.

Here the gel pack is 10.7 degrees Celsius, the Frio pouch is 23.8 degrees Celsius, and the oven is 35.5 degrees celsius.

The Results

Thanks to the magic of Excel we can see how the two pouches fared. The oven temperature, which had previously reached the target temperature, was slowly dropping but remained above 30 degrees for the whole time. The Frio pouch, with the oven’s heat being used to turn the Frio’s water to steam, was holding a reasonably even temperature. The gel pouch, with nothing but insulation, slowly increased in temperature, catching up to the Frio after about 30 minutes, despite the 15 degree head start.

To be honest I was not sure the Frio pouch would work as well as it did as the oven was closed and, therefore, once the air inside the oven was saturated with moisture, the Frio would no longer be able to cool but for the 30 minutes it continued to work.

Conclusions

First of all I was really impressed the results came out as well as they did, showing the characteristics of the two pouches. For my money, if I was expecting to carry insulin for an extended period of time in high heat, I would likely look to a pouch that uses evaporative cooling. I would also invest in a MedAngel so I could check the temperature inside the pouch at any time and be alerted if things were going astray. Gel is a much cheaper option, of course, so, for short excursions, it will work fine. You could also, if you had a large enough pouch, put a cooled gel pouch inside a Frio pouch and gain a double benefit. As long as the Frio pouch is on the outside this should work fine.