EASD 2021: Reconciling the International Consensus Reports for LADA and Type 1. Part 2: Treatment

For Part 1, looking at reconciling the reports for diagnosis, go here.

Thanks to the generosity of #dedoc°, I recently had the privilege of virtually attending the world’s largest Diabetes conference: EASD 2021. Arguably the biggest news at the conference was an international consensus on the diagnosis, treatment, and management of Type 1 Diabetes. Interestingly, last year an international consensus was released for the diagnosis, treatment, and management of LADA. In Part 1 I reviewed how the two differed in terms of the diagnosis of Type 1 and LADA. In this second and final part I will look at the two reports’ recommendations for treatment and consider questions such as:

  • Should someone diagnosed with LADA go onto insulin immediately?
  • Are there treatments for Type 1 other than insulin?
  • If I do use insulin what are the pros and cons of the various methods of delivery?

As usual, for those who want the short version, you can go to the tl;dr section at the end.

Where We Landed In Part 1

In Part 1, I concluded the diagnosis flow chart from the Type 1 report was the more detailed and effectively covered LADAs flow chart.

So, assuming someone has LADA or Type 1 diabetes means either:

  • We have some reason to suspect diabetes (unintentional weight loss, ketoacidosis, glucose > 20 mmol/L (>360 mg/DL) etc.)

AND

  • Auto-antibody presence OR
  • Low C-peptide (less than 200 pmol/L (0.2 nmol/L) ) OR
  • No features of Type 2 diabetes (BMI >= 25 kg/m^2, no weight loss, no ketoacidosis, less severe hyperglycaemia etc.)

Treatment According to the LADA Report

The LADA report has a flow chart for treatment which looks like this:

The Type 1 C-peptide limit is different (0.2 nmol/L vs 0.3 nmol/L) but, given there are two other options available which do not consider the C-peptide level in the Type 1 report (auto-antibody presence and no Type 2 features), there is still the possibility that someone with Type 1 could have a C-peptide in any of the above three ranges.

I go through the LADA and Type 2 guidelines in detail in my “Gold Standard” LADA article. In short, if your C-peptide is over 0.7nmol/L (700 pmol/L) options include:

  • Metformin
  • GLP-1 RA
  • SGLT-2i
  • DPP-4i
  • Basal insulin
  • TZD

While part of the Type 2 algorithm, there is a notable exception of Sulfonylureas not being used with LADAs because “The panel concluded that sulfonylureas are not recommended for the treatment of LADA, as deterioration of b-cell function as a consequence of this treatment cannot be ruled out”.

For patients with a C-peptide below 0.7 nmol/L, there are two flow charts. The first is if heart (ASCVD/HF) or kidney (CKD) disease is present with the same medications as before except TZDs which may have been excluded because of the limited evidence of benefit and increased risk of bone fracture.

For patients without heart or kidney disease, we have this chart where the SUs are still not present but which does include TZDs.

What is good is this set of flow charts covers the entire Type 1 C-peptide spectrum which means, even when someone with LADA becomes a “classic” Type 1 because of declining C-peptide levels, we have a prescribed course of action. What is missing is a complete answer to the question “When should someone with LADA start using insulin?” The answer from the above flow charts is “If the HbA1c is above target” but no target is firmly established. Let us move to the Type 1 report.

Treatment According to the Type 1 Report

In fact, the Type 1 report immediately addresses the issue of targets for Type 1 in their first table.

Here the target HbA1c is 7.0% with the caveat that “all glycemic targets should be individualized and agreed with the person with diabetes.” So, unless we have discussed and agreed on a different target with our health care team, achieving an HbA1c equal to or below 7.0% is a good benchmark for considering moving to the use of insulin. This is in agreement in my post where I considered how high someone’s HbA1c could be before a significant risk of long term damage.

For the specific question of when someone with LADA should consider bolus insulin, we also have guidelines for post-prandial (after meal) insulin levels with the suggestion that 1-2 hours after a meal a person’s glucose level should be less than 10 mmol/L (180 mg/dL) and the option of pushing this to less than 7.8 mmol/L (140 mg/dL) if safe to do so.

In contrast to the LADA report, the Type 1 report takes an “insulin-first” approach saying “The cornerstone of type 1 diabetes
therapy is insulin replacement” and providing the following summary of the multi-pronged approach suggested for the newly diagnosed.

Given how difficult it can be to manage insulin therapy in the newly diagnosed, it acknowledges the need to prepare for hyperglycemia (“highs”) and hypoglycemia (“lows”).

The Type 1 report also talks about the relative merits for the different ways of delivering insulin.

Where money is no object, clearly, closed-loop technology is the winner.

Eventually (page 27 out of 37 pages), the Type 1 report talks about “Adjunctive therapies”. In other words, treatments which can be used alongside insulin.

There is common ground between the two reports with both reports mentioning Metformin, GLP-1 RA, and SGLT-2i. It also mentions pramlintide which is an amylin analogue (another hormone produced by the beta cells and, therefore, compromised in Type 1 diabetes). It fails to mention DPP4i and TZD. TZD may be because of the limited evidence but I am not sure why DDP4i’s were left off the list. They affect the same hormone cycle as GLP-1 RAs and therefore have similar effects/benefits.

Reconciling the Two Reports

In contrast to Part 1 where I sided with the Type 1 flow chart for diagnosis, here I am siding with the LADA report for treatment. There are a few reasons for this:

  • It explicitly considers treatment in the presence of heart and kidney disease
  • It offers a more comprehensive range of non-insulin treatment options e.g. DPP4i and TZD (but should likely include Pramlintide as well)
  • It takes the approach that insulin may not be necessary in patients with high C-peptide levels and, given the inherent hypo/hyper risk that comes with using insulin, if target ranges can be maintained, this seems like a sensible approach to me

This being said, the Type 1 report is much more comprehensive in considering the various ways of delivering insulin to the body (injection, pumps etc.) and also has a lot to say about looking beyond medication for individualised treatment e.g. considering lifestyle factors and diabetes education.

One big takeaway for all people with Type 1 or LADA should be that treatment no longer begins and ends with insulin. There are a range of other medications which can help with managing long term blood glucose levels and have other benefits such as helping a patient lose weight or reduce blood pressure.

tl;dr

Arguably, the LADA report’s flow charts for the treatment of Type 1 diabetes are more detailed for treatment than what is presented in the Type 1 report. Not only, does the LADA report consider insulin independence for patients with high C-peptide levels, it considers which medications are appropriate in the presence of heart or kidney disease. However, the Type 1 report fills in a significant gap of providing target values to chase and which help inform decisions such as when to move to insulin therapy.

The Type 1 report also goes into more detail in the areas of:

  • The relative merits and costs of different insulin delivery methods
  • Treatment of Type 1 diabetes beyond medication e.g. lifestyle factors and education

EASD 2021: Reconciling the International Consensus Reports for LADA and Type 1. Part 1: Diagnosis

Thanks to the generosity of #dedoc°, I recently had the privilege of virtually attending the world’s largest Diabetes conference: EASD 2021. Arguably the biggest news at the conference was an international consensus on the diagnosis, treatment, and management of Type 1 Diabetes. This is a comprehensive guide, backed by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD), which should, in my opinion, be the bible for health care professionals and for guiding health-related government policy.

Interestingly, last year an international consensus was released for the diagnosis, treatment, and management of LADA. I wrote a blog on it at the time going through the details. While not the same authors, nor directly endorsed by ADA/EASD, one would hope the two reports are broadly aligned in their approach given LADA is usually considered a sub-group of Type 1. In fact they are but there are differences at the edges and I raised this during the conference.

Rather than wait for the academics I thought I would go through the reports and see if I could make some headway. I will split this up into at least two parts with this one covering the diagnosis of Type 1 and of LADA.

As usual, there is the tl;dr section at the end for those that want to cut to the chase.

Diagnosing LADA

The first problem is there is no simple categorical feature of LADA. At diagnosis it shares features with “classic” Type 1 and Type 2.

So, while we can make a good guess at diagnosis, there is room for error. The report goes on to weigh up the various factors which can be used for assessment and comes up with the following flow chart.

So, first we test for the auto-antibody GADA. If it is positive, the person has Type 1 (LADA) diabetes and their treatment is then determined by their C-peptide levels. The report is vague on whether the C-peptide test is fasting, random time, or post-prandial (after a meal).

If the GADA screening is negative, the report suggests it is likely the patient has Type 2 diabetes and, therefore not LADA (although Type 3c and MODY should be considered). However, if LADA is still suspected, other auto-antibodies such as IA-2A, ICA, and ZnT8A can be screened. If these are positive, we are back to a positive diagnosis of Type 1 with treatment being defined by C-peptide levels.

Diagnosing Type 1

The Type 1 report also weighs up the various factors in diagnosing Type 1 compared to other Types, such as Type 2 and MODY and comes up with this flow chart.

The first statement, like the LADA report, is that no one feature is categorical, not even auto-antibodies (which can be present in other conditions). So, assuming something, such as DKA, has triggered the investigation, testing for auto-antibodies is, like the LADA report, the first place to look. Also, similar to the LADA report, the Type 1 report considers GADA as the first auto-antibody to screen for, followed by the others. If the test is positive, the patient is considered to have Type 1 diabetes.

If the test is negative (as can be the case in 5-10% of people with Type 1), age is the next consideration. For patients over 35 years old, it is not obvious what Type of diabetes they have. The suggestion is assume Type 2 unless there is suspicion of a different Type e.g. Type 3c, but monitor closely for a rapid deterioration in insulin production. After 3 years, test their C-peptide levels (“a random C-peptide measurement (with concurrent glucose) within 5 hours of eating”) and if they are very low (less than 200pmol/L) then they are considered to have Type 1 diabetes. If the C-peptide levels are high (greater than 600pmol/L) the patient is considered to have Type 2 diabetes. If their C-peptide levels are between these two extremes, the recommendation is to re-test in 5 or more years.

For patients who test negative for auto-antibodies and are less than 35 years old, if MODY is suspected, test the C-peptide and if greater than 200pmol/L, perform genetic testing for MODY. If the C-peptide is less than 200pmol/L, the patient is considered to have Type 1 diabetes. Where MODY is not suspected, and there are no indications of “classic” Type 2, the patient is considered to have Type 1 diabetes. While not obvious what the conclusion is for patients with a C-peptide greater than 200pmol/L, one would assume they follow the same path as those over the age of 35.

Reconciling the Two Consensus Reports

The Type 1 flow chart is more complex so we will use this as the foundation and modify it, if required, to align with the LADA flow chart.

In both reports it is directly acknowledged there is no categorical feature to define Type 1 or LADA. For the purposes of diagnosis, this means there must be a reason we are testing for diabetes in the first place. The Type 1 report suggests “unintentional weight loss, ketoacidosis, and glucose >20 mmol/L (>360 mg/dL) at presentation…Other features classically associated with type 1 diabetes, such as ketosis without acidosis, osmotic symptoms, family history, or a history of autoimmune diseases are weak discriminators.”

Assuming some kind of indicator of diabetes is in place, both reports call for screening for the GADA auto-antibody. If this fails, following up with the other indicative auto-antibodies. If any of these are positive then we have a diagnosis of Type 1 and, depending on the C-peptide level, treatment may differ. Given we are dealing with diagnosis and not treatment in this post, let us move to the case of a negative auto-antibody test.

For the LADA consensus report, once all of the auto-antibody tests come back negative, the conclusion is the patient is Type 2. However, the Type 1 consensus report does not give up so easily. As mentioned in the previous section, if the person is under 35, and there is no indication of MODY or Type 2 (high BMI, no DKA and less severe hyperglycaemia), the conclusion is the patient is likely to have Type 1 diabetes.

This last part, where the patient is negative for auto-antibodies, is probably the biggest departure in diagnosis between the two flow charts. Given there is a far higher rate of misdiagnosis of Type 1/LADAs as Type 2 than the other way around, my preference would be to side with the Type 1 report’s process and conclusions. As we will see in my future post on the treatment recommendations of the two reports, the treatment for a person with Type 1 and high C-peptide levels (as can be the case for LADAs), and the treatment for people with Type 2 is quite similar with main difference being the exclusion of sulfonylureas which can accelerate a person with LADA’s progression to insulin dependence.

tl;dr

The two consensus reports are pretty similar with the Type 1 report being the more comprehensive. The main difference is for people who test negative for auto-antibodies. For the LADA consensus report, it is assumed they have Type 2 diabetes whereas the Type 1 consensus report assumes, if there are no indications of MODY or Type 2, the patient likely has Type 1 and should be treated accordingly.

Therefore, whether someone is suspected of having Type 1 diabetes or are part of the LADA sub-group, the Type 1 consensus report’s flow chart is a good guide for accurate diagnosis. The main steps of this flow are:

  • Determine there is a reason to suspect some form or diabetes e.g. unintentional weight loss, ketoacidosis, and glucose >20 mmol/L (>360 mg/dL) at presentation
  • Screen for GADA auto-antibodies
    • If positive, the patient has Type 1 diabetes
    • If negative and under 35
      • Consider the possibility of MODY and, for a sufficiently high C-peptide level, test if suspected. If negative for MODY (presumably) treat them as if they were negative and over 35 (see below)
      • Consider the possibility of Type 2. If the presentation is consistent with Type 2 (high BMI, no DKA and less severe hyperglycaemia) then diagnose them as if they were negative and over 35 (see below)
      • If the presentation is not consistent with “classic” Type 2 diabetes, assume they are Type 1 and treat accordingly
    • If negative and over 35
      • Consider the possibility of other Types but, if there are no other indicators, assume Type 2 diabetes but monitor closely for a rapid drop in insulin production. Test C-peptide levels in 3 years (“a random C-peptide measurement (with concurrent glucose) within 5 hours of eating”). If the C-peptide levels are high, the patient is considered to have Type 2 diabetes, otherwise re-test in 5 or more years

The Gold Standard for Treating Type 1 LADA (And Fighting To Be Recognized)

LADA often falls through the cracks between Type 1 and Type 2 Diabetes so wouldn’t it be wonderful if the world’s greatest minds came together and determined the best approach for managing LADA? In fact they did and published the conclusions in October this year (2020).

The paper is quite long but they provided nice flow diagrams which are easy to follow. If even that is too much for you, there is the tl;dr section at the end of this post.

Diagnosing Type 1 LADA

First of all the article talks about the phenotypical characteristics (how it presents) of LADA with this table summary:

As it states, none of these categorically define LADA. Fortunately, further on, it provides a flow diagram for a definitive diagnosis:

The test starts not with a glucose tolerance test, a ketone test, or a urine test but a blood test to look for the GADA auto-antibody. As LADA is a form of Type 1 Diabetes and, as the Types are defined by their aetiology (cause), the definitive test for LADA is for an auto-antibody associated to Type 1 Diabetes (GADA).

If the blood test comes back positive, the treatment applied is dependent on the patient’s c-peptide level. C-peptide is a ‘leftover’ product from the body’s production of insulin so the c-peptide level can be seen as a measure of the body’s insulin production.

For a c-peptide level less than or equal to 0.7 nmol/L the LADA algorithm (defined in the paper) is applied. For a c-peptide level above 0.7 nmol/L, the existing Type 2 Diabetes guidelines, established by the ADA (American Diabetes Association)/EASD (European Association for the Study of Diabetes) are used, with a c-peptide re-test every six months.

If the GADA test is negative, The patient may be Type 2 (or MODY or have pancreatitis) but, if LADA is still suspected (presumably based on the broad characteristics of the disease listed above), other auto-antibodies associated with Type 1 Diabetes should be tested for.

The Type 2 Diabetes Guidelines

Here it is, modified in February 2020. The full paper can be found here. This is quite an involved flow diagram and, I will come back to it a little later on, in the context of LADA, but, if you are Type 2, it is worth a read to see if your health team are abreast of the latest recommendations. One point of note to LADAs who are being treated as Type 2s is the use of sulfonylureas for LADA patients is NOT recommended, whereas these drugs are often used with Type 2 Diabetics. The reason being sulfonylureas have been shown to accelerate the destruction of the beta cells in LADA/Type 1s and therefore will shorten the honeymoon before full insulin dependence.

The LADA Algorithm

Here it is. This is the flow diagram recommending the best possible treatment for people with Type 1 LADA, based on the latest information as of October 2020.

If your c-peptide level is less than 0.3 nmol/L then insulin should be used (basal and/or bolus, as required). For c-peptide levels between 0.3 and 0.7, metformin is seen as the gold standard and, as discussed in the Type 2 section above, NO sulfonylureas.

The rest of the treatments are based on the risk of cardio-vascular disease (ASCVD), heart failure (HF) and kidney disease (CKD). The flow is a little confusing but the treatments are GLP-1 Agonists (GLP-1RA): I talk about those here, SGLT2 inhibitors (these are a class of drugs which promote the passing of sugar out of the blood through the kidneys), and, if the patient’s HbA1c is above target, the inclusion of basal/bolus insulin.

How Do I Stack Up?

Being a typical LADA I thought I would run myself through the flow diagrams. While the hospital which treated my pre-diagnosis DKA failed to perform a test for GADA auto-antibodies (and simply assumed I was Type 2), my family doctor did and, on 3 March 2017, I was diagnosed as Type 1 LADA (my GADA levels were literally off the charts).

My fasting c-peptide level has never been below 1.3 nmol/L since diagnosis, so I fall under the Type 2 ADA/EASD guidelines (but no sulfonylureas!) Recommended treatments include:

  • Metformin
  • Weight management
  • Exercise
  • GLP-1RAs
  • SGLT2 inhibitors
  • TZDs (an insulin sensitizer similar to Metformin)

I am broadly following this recommended treatment. I use Metformin and a GLP-1RA (Ozempic/Semaglutide). I am working on reducing my weight (I fall into the ‘obese’ category for BMI) and I probably should do more exercise.

Recognizing Type 1 LADA

Based on the above recommendations, it is clear drugs such as GLP-1RAs and SGLT2 inhibitors are appropriate treatments for Type 1 LADAs with sufficiently high c-peptide levels. Yet, if we look at this Australian Pharmaceutical Benefit Scheme Press Release we see Ozempic (Semaglutide) (a GLP-1RA) is approved only for Type 2 Diabetes. The other GLP-1RA available in Australia, Trulicity (Dulaglutide), is also only approved for Type 2 Diabetes. The consequence is, instead of paying $41 a month for this recommended medicine, LADAs such as myself pay $140 per month. The $1,700 per year cost talked about in the PBS press releases is the reality for Type 1 LADAs in Australia. Moreover, while there are “Safety Nets” for PBS approved medicines, for a LADA like myself who is obtaining the recommended treatment under a “private prescription”, no safety net applies.

While having to constantly explain that insulin independent Type 1 Diabetes is a reality to medical professionals or on social media is frustrating, the significant financial impact of ignoring LADA means there are Type 1 LADAs here in Australia (and in other countries which naively consider medications as strictly “Type 1” or “Type 2”) who are not getting the appropriate treatment for their disease and this is having a direct impact on their quality of life and their ability to contribute fully to society.

tl;dr

The definitive test for Type 1 LADA is a blood test for auto-antibodies. The most common auto-antibody is GADA but, if this is negative and LADA is still suspected, other auto-antibodies associated with Diabetes should be tested for.

Once LADA is established, the treatment depends on the c-peptide level of the patient. If the c-peptide level is below 0.3 nmol/L, the patient should use basal/bolus insulin, as needed. For c-peptide levels above this, recommended treatments include:

  • Metformin
  • Weight management
  • Exercise
  • GLP-1RAs
  • SGLT2 inhibitors
  • TZDs (an insulin sensitizer similar to Metformin)

Sulfonylureas are NEVER recommended for Type 1 LADAs.

Sadly, in many countries, some of these treatments, such as GLP-1RAs are not recognized as appropriate for Type 1 Diabetics, including LADAs, and, therefore, are often not covered through government subsidy schemes or health insurance. If this is the situation where you live, and you are a LADA who cannot access the medications for your disease, I strongly encourage you to petition the appropriate bodies to get the guidelines changed.

A Cooling Pouch For Less Than US$5 To Help Keep Your Insulin From Overheating

If you have seen the Glucology or Frio insulin pouches you will already understand the concept of an evaporative cooling insulin pouch. They work really well but the downside is the price. For a two-pen pouch you are looking at around US$30. In this blog I will show you how to make your own for less than US$5 (if you have a sewing machine) or, if that is too much hassle, you can buy a ready-made one from my Etsy shop for around US$20 including shipping anywhere in the world or AU$25 including shipping within Australia. For every one purchased, I will be supplying an identical one to charities around the world who are supplying insulin in developing countries where refrigeration is unreliable.

How Do They Work?

Evaporative cooling pouches work off of the idea that if water is evaporating from something, that something gets cooler. This is how humans cool themselves i.e. sweating. The key technology in the cooling pouches that allow them to remain cool for well over 24 hours are the little beads inside the pouch. These hydrophilic beads (a big word meaning they hold onto water) are the same ones you might know as Orbeez or those squishy spheres you see flowers in sometimes.

Magic Moisturizing Crystal Mud Soil Water Beads For Flower Planting Super  absorbent polymer Crystal Soil Jelly Balls Home Decor|soil water beads|water  beadscrystal mud - AliExpress

Same technology, different application. While the beads love holding onto water, it still evaporates and, while it does, they and anything they are surrounding feels cool to the touch. Embed them in material and that material, and anything it is surrounding also becomes cool.

DIY Step One: The Materials

Firstly, you will need two cooling scarves. They look like this:

You can buy these from Amazon but this will set you back about US$4 each before postage. Go to Ebay and select the international option and, while it might take a little longer to arrive, you can pick them up for around US$1 each.

You will also need a sewing machine or someone with the time to hand stitch them.

DIY Step Two: Stitching

Lay one on top of the other. For symmetry, I have put the seam of one (the white stitching on the edge) to the non-seam side of the other.

Then you will want to do a straight stitch along the edges so the two pieces form a long tube.

The dark line at the bottom on the scarf in the above picture is the straight stitch you need to do on the top and bottom. There is one at the top in the image as well but, because I was using a light brown thread in my bobbin, it is a little tricky to see. While I went a little over in the above picture, you want to go up to the white stitching which runs up and down on the left hand side in the above picture. This gives you the ties on the end of the scarf to secure the pouch, once finished.

DIY Step Three: Inverting

Arguably the fiddly bit, you now push the tube inside of itself to invert it and hide the stitching. I found the best way was to pull it out, rather than trying to push it through with a stick. In the end you will have an inverted tube which looks something like this.

You are now the proud owner of a cooling insulin pouch. Well done!

How To Use Your Pouch

Before use you will need to soak your pouch. I recommend no more than five minutes. Any more than this and the beads will absorb too much water and make it too hard to insert the pens/cartridges/vials. There is probably a risk of splitting the stitches as well.

Once soaked, dry it off with a dishcloth or towel. The material does not have to be wet for it to be effective. It is the beads inside which do the work.

Then, you can insert your hardware.

In the above example, I have my basal and bolus insulin pens and a MedAngel (a Bluetooth thermometer which connects to your phone).

Once inside, you can use the those end ties to keep it all together.

Does It Really Work?

While I am still insulin independent, I always carry insulin whenever I travel overseas for work. Just before the world locked down, I took my pouch to Singapore. Even with Singapore’s humidity, the pouch, within my backpack, was effective at keeping my insulin cool as I walked, in the direct sun, to the office each morning. Tests I have conducted in more controlled conditions show the pouch is as effective as its commercial counterparts.

Here you see three temperature gauges measuring (in Celsius) the temperature in my house (the middle one), the temperature of a commercial pouch (on the left) and my one (on the right). Even inside, both pouches shaved off 2-3 degrees Celsius (4-6 degrees Fahrenheit). The effect becomes even stronger in direct sunlight where I have seen temperature differences of 10 degrees Celsius (20 degrees Fahrenheit) between the ambient temperature and the pouch.

“Recharging”, Storage and Care

The pouch will continue to keep the contents cool for over 24 hours. When you want to “recharge” it, immerse it in water for no more than two minutes. Again, if you over-immerse, you risk expanding the beads too much and making it impossible to insert your pens etc. or breaking the stitching.

If you are not planning on using your pouch for a while, let it completely dry out in the sun or on an air vent and, when completely dry, store it in a cool, dry place.

Time In Range – The New HbA1c

Most diabetics, certainly most Type 1s, know their HbA1c. As described previously, the HbA1c is a measure of the ‘average sugariness’ of the blood over the last three months. As a diagnostic test, the HbA1c has been with us for a little over 40 years and has served us well. However, as technology has improved for the management of diabetes, the ways we keep tabs on our blood has also evolved and a new measure: Time in Range is growing in popularity among both diabetics and researchers alike. In fact, quite a few talks at EASD 2020 spoke directly at Time in Range and linked it to the long term health of diabetics.

In this blog I will talk about what the HbA1c tells us, its limitations, and the additional insights we can gain through the Time in Range. As usual, at the end, we have the ‘Cliff Notes’ tl;dr.

Benefits of Measuring the HbA1c

As I have shown previously, many papers examine the relationship between long term HbA1c and complications and this was reiterated by Professor Pratik Choudhary at EASD 2020 with this excellent graph.

The Limitations of the HbA1c

While of diagnostic value, there are limitations with the HbA1c measure.

Firstly, the measure assumes the lifespan of the red blood cells as part of the calculation so, if this assumption is invalid, it can affect the HbA1c. Common causes of false HbA1c readings include:

  • Anaemia
  • Excessive alcohol consumption
  • Excessive use of opiates
  • Pregnancy
  • Blood transfusions

The second and arguably biggest limitation of the HbA1c measure is while it speaks to the ‘average sugariness’ it says nothing of the variation. This is why, historically, doctors have erred on the side of a higher HbA1c with Type 1s, often to the diabetic’s frustration. The reason is simple: if the diabetic’s glucose levels fluctuate significantly, and they keep a lower glucose level, they are at an increased risk of hypo whose effects are immediate (groggy, fall over, go unconscious etc.) whereas running a little ‘high’ and fluctuating mitigates the risk of hypos at the expense of increasing the risk of long term nerve damage. To put it simply, with limited visibility of the fluctuations using strip glucose monitors, it makes sense that doctors err to minimize risk today and encourage their patients to run a little higher with a view that the longer term risks can be managed later.

Interestingly, in his talk, Professor Choudhary blamed his patients for running high and having high fluctuations, suggesting they are driven by fear of a hypo which then leads to over-correcting and large fluctuations.

Fortunately, Continuous Glucose Monitoring (CGM) technology gives a much clearer picture of the fluctuations, informing both the doctor and patient, and allowing them to proceed informed, rather than out of fear.

Time in Range

It has taken a while for a standardization of Time in Range guidelines but in August 2019 we got one from the ADA.

The standard is adjusted for various sub-groups of diabetics.

What is more, these ranges are not random, or at the whim of some group of doctors, but backed up by statistically significant links to both long term complications and the equivalent HbA1c.

Some of these were highlighted by Professor Richard M. Bergenstal.

and Anass El Malahi at EASD 2020.

As we can see, we can link changes in Time in Range to changes in the risk of retinopathy, microalbuminuria, microvascular complication, and nephropathy.

Professor Bergental also showed, using the CGM data of three of his patients, how much more insightful Time in Range can be, compared to HbA1c.

Here the three patients have exactly the same HbA1c but very different experiences with their diabetes. with the third patient spending a lot more time in hypo and much less time in range.

Bringing together the Time in Range with the latest data on what it means for long term complications, the Ambulatory Glucose Profile (AGP) Report captures the key metrics along with statistically significant guidelines in one page.

As we can see the report captures:

  • Percentage time in the different BGL ranges
  • Average Glucose
  • Glucose Management Indicator (GMI): an estimation of the HbA1c
  • Glucose variability: a measure of fluctuation

which, given the GMI on its own is a proxy for the HbA1c, shows we are considering a lot more information in the AGP report than simply ‘average sugariness’.

The Big Problem with Time in Range

The big problem with Time in Range analysis is it requires a Continuous Glucose Monitor (CGM) to capture the data: it is a metric of privilege. While many of us have no exposure to it in the West, in places like Mexico, some Type 1 diabetics are given literally one strip per day to manage their blood glucose levels. Fortunately, research shows the proportion of finger pricks in, below or above range can still be correlated to HbA1c estimations and, therefore, give an indication of long term risk.

Also, with an increase in Time in Range of 10% leading to a lowering of HbA1c of 0.5%, using the above, we see that for someone whose finger pricks are in range 70% of the time, this correlates to an HbA1c of roughly 7%, as with the CGM data. This means the AGP Report and the guidelines it contains can be applied to CGM or finger pricking equally. So, while a diabetic’s management technology may change over time, their reporting for their health care team does not have to.

tl;dr

With the advent of Continuous Glucose Monitoring (CGM) we have new and insightful ways of examining our data beyond what is available with finger pricking and the HbA1c. One such way is analysing the Time in Range of our data. Time in Range provides a wealth of knowledge about both average sugariness and the glucose level fluctuations. One way to present this information is with an Ambulatory Glucose Profile (AGP) Report.

While driven by CGM technology, it is possible to use the AGP Report with finger pricking by considering the proportion of results that fit in the low medium or high categories. This now means we have a common report whether we are finger pricking or using CGMs.

Clinical research using Time in Range analysis has also established that it is predictive for a range of long term diabetes complications. This means, Time in Range analysis and the AGP Report are now a viable alternative to the HbA1c and provide much richer insights.

The Benefits of Incretin Mimetics For All Diabetics

I first read about incretin mimetics in Dr. Bernstein’s fourth edition of “Dr. Bernstein’s Diabetes Solution” published in 2011. He devotes nine pages to this class of drugs and it is a good place as any to describe what they do. It should be noted for those unfamiliar with Dr. Bernstein, his focus is on the treatment of Type 1 diabetes. While incretin mimetics are sometimes hailed as a ‘Type 2 drug’, they can be of benefit to diabetics of all Types as I will show in this blog.

From there I will update the information based on some peer reviewed papers from recent years (specifically relating to LADA) and the presentations at the recent EASD 2020 conference and then onto my own experience using them. As usual, there is the tl;dr at the end if you want the short version.

What Are Incretin Mimetics?

To understand the role of incretin mimetics, it is important to understand that beta cells produce, not just insulin, but also another hormone called amylin. Amylin is a ‘satiety’ hormone i.e. it makes you feel full. So, as the beta cells become damaged they are less able to produce this hormone. Amylin is released in response to the presence of ‘gut hormones’ in the blood, released when the gut is stretched. These ‘gut hormones’ are called ‘incretins’.

Based on all this, Dr. Bernstein suggests that diabetics of all persuasions are likely to not feel as ‘full’ as their non-diabetic counterparts. For me, this poses the question: “If someone who has impaired beta cell function cannot effectively regulate their eating, is it possible Type 2 diabetes and pre-diabetes causes obesity and not the other way around?” but that is a blog for another day.

At the time of writing his book, Dr. Bernstein describes incretin mimetics as being used to lower blood sugar levels after meals and for weight loss. We now know they have many more effects on the human body.

GLP-1 Receptor Agonists (GLP-1RAs) are one such incretin mimetic. As per the above we see, among other things, they can:

  • Lead to weight loss (likely due to the increased sensitivity to feeling full)
  • Lower glucagon secretion (meaning the liver releases less glucose into the blood)
  • Stimulate insulin secretion and production (to process the food that is causing the stomach to feel full)
  • Decrease beta cell apoptosis (this is the fancy name for programmed cell death. Cells in the body are given a countdown clock. When that clock reaches zero the cell destroys itself. Incretin mimetics tinker with that clock to extend the life of beta cells)
  • Offer protection from heart disease
  • Lower blood pressure

I should note that while these drugs do stimulate insulin production like, say, sulfonylureas unlike ‘sulfs’ the evidence shows this does not accelerate the demise of the diabetic’s honeymoon. My guess is the suppression of apoptosis counters the effect. Another possible explanation is, because the insulin is getting triggered earlier and harder, the blood sugars are not getting the opportunity to rise as high. Dr. Bernstein talks about how it takes more insulin to bring blood sugar down by a fixed amount when it is at a high level than when it is lower. So, the mimetics get the insulin out early when it is more effective and therefore the net production for a given meal is less.

Types of Incretin Mimetics

There are three types of incretin mimetics. These are:

  • Amylin analogs: To my knowledge the only one on the market is Symlin (pramlintide). This is available by injection. I have not tried this one. EASD 2020 had a presentation on using it in a dual-hormone therapy (pumps with insulin and pramlintide) but the benefit of the additional pramlintide, in this context, was minimal.
  • GLP-1 agonists (mentioned above): This is mentioned above with the associated effects. Until recently this was also only available via injection. Recently an oral version has been released (more of that later). I am currently on a once-weekly injection of this drug. Here are the six GLP-1s on the market at the time of writing.
  • DPP-4 inhibitors: DPP-4s destroy GLP-1s in the body so this drug opposes that destruction and therefore, in principle, eliminates the need to inject GLP-1s. DPP-4s are available in an oral form and I took these for at least six months before moving to the GLP-1 agonists.

Contraindications and Side Effects

I will list some of the more common side effects but this list, like for most drugs, is far from exhaustive so discuss your specific history with your health care team to get a full picture of how well these drugs might suit your circumstances and complication risk profile.

Firstly, incretin mimetics slow stomach emptying so this can make gastroparesis (a condition not uncommon in Type 1s) worse. This slowing can also induce nausea. People on social media will be more than willing to tell you how incretin mimetics made them violently ill. For me, I feel mild nausea a day after injecting the GLP-1 agonist (akin to very mild car sickness) but felt no such effect when taking the DPP-4 inhibitors.

One side effect that was actually beneficial for me was constipation. As I also take Metformin, I have found the GLP-1 agonist and Metformin balance themselves out nicely giving me a lot of freedom I did not have when taking Metformin with the DPP-4 inhibitor. It is different for everyone though as GLP-1 agonists are also reported to have diarrhoea as a side effect.

One of the more serious side effects is the risk of reversible pancreatitis. I am informed pancreatitis is one of the most painful things you can experience and is usually characterized as a sudden, severe abdominal pain extending through the body from the back to the front. As the name suggests, stopping the medication reverses the condition.

LADA-Related Studies on DPP-4 Inhibitors

Given I am a Type 1 LADA trying to preserve my beta cells as long as possible and avoid the financial and mental stresses of insulin management, many of the studies I have earmarked, up to EASD 2020, are focussed on blood glucose management and beta cells preservation. Here are a few:

Presentations From EASD 2020

Tina Vilsbøll presented on Semaglutide, a new GLP-1 which can be taken as a once-weekly injection or as a once-daily oral pill, both being equally effective.

Juris Meier went into more detail as to the efficacy of the oral version, compared to other GLP-1 agonists, in Type 2s, showing it was more effective at reducing HbA1c.

The oral version of Semaglutide also compared favourably to the DPP-4 inhibitor Sitagliptin at doses above 3mg for Hba1c reduction and weight loss.

The downside was an increase in adverse reactions at the higher doses, compared to Sitagliptin.

So, if you are considering swapping out Sitagliptin for Semaglutide, understand that for a superior effect on HbA1c and weight loss you are also at a greater risk of those adverse effects.

Alice Cheng showed how the injectable version compared favorably to both DPP-4 inhibitors and other GLP-1 agonists for reducing HbA1c and weight loss.

For adverse effects, Semaglutide was comparable to other GLP-1 agonists.

My Experiences With DPP-4 Inhibitors and GLP-1 Agonists

As mentioned, I have used both in an attempt to preserve my beta cell mass. For me, the DPP-4 Inhibitor had no side effects or, at least, any side effects were washed out by the ones from Metformin. The DPP-4 Inhibitor did nothing for me in terms of HbA1c reduction (although it is already in the mid-5% for this is not surprising), satiety, or weight reduction.

My experience with the injected GLP-1 agonists has been very different. Given the trouble I was having with Metformin, I halved that dosage but found the two drugs balanced each other nicely, as touched on before. I have lost five kilograms over a couple of months (I have it to lose) which I attribute to my significantly reduced appetite and improved sense of satiety. It is only now I realise it has been years since I actually felt full eating food and the GLP-1 agonist has given this back to me.

tl;dr

While traditionally considered a ‘Type 2 drug’, there can be benefits in incretin mimetics for all Types of diabetics. For all Types we have the general benefits of:

  • Lowering blood pressure
  • Lowering the risk of cardiovascular disease
  • A sense of feeling ‘full’ which may be lacking in diabetics
  • A lowering of HbA1c
  • Weight loss (especially for the GLP-1 agonists)

For Type 2s, the benefits also include the lowering of blood sugar levels through the increased release of insulin after meals and supressed release of glucose from the liver.

For Type 1 LADAs there is growing evidence that incretin mimetics can help preserve beta cell function and prolong the honeymoon. Certainly the latest guidelines for managing LADA fully embrace incretin mimetics even if, formally, they are not approved for use in Type 1s.

In terms of side effects, incretin mimetics can cause stomach issues and nausea but, generally, these are mild and much less pronounced in DPP-4 inhibitors.

New innovations in incretin mimetics include:

  • An improved once-weekly GLP-1 injection and
  • An oral GLP-1 taken once-daily

While superior to similar products on the market in terms of their effects on HbA1c and weight loss, it comes at the cost of increased risk of side effects such as nausea, diarrhoea, and vomiting.

EASD 2020: Is Cycling Good For Diabetics?

I posted this Tweet based on one of the presentations at EASD 2020.

It is worth going through some of the details because it seems incredible that as little as one hour a week of cycling really reduces all-cause mortality by more than 20% in diabetics. It is also a great study to see the limitations of research and statistics. As usual, if you want to cut to the chase, head on over to the tl;dr section.

Details of the Study

Presented by Mathias Ried-Larsen, data was taken from the “European Prospective Investigation into Cancer and Nutrition” (EPIC). This is a massive study across 10 European countries with over half a million participants looking at factors such as diet, environment, lifestyle, and chronic disease.

They took the data and filtered it to people with diabetes at the start of the EPIC study and for which relevant data had been recorded. This brought the number of participants down to 7,513 of which 63% were confirmed to have diabetes with the others being self-reported. A second cohort was considered at the second examination point to see how a change in cycling habits changed mortality rates. This second group comprised of 5,506 people.

The forms of mortality looked at were all-cause mortality (dying for any reason) and cardiovascular mortality (presumably because it is a common killer and one which is a higher risk in diabetics).

Looking at other factors of the diabetes group, it was seen that the participants were mostly middle-aged and overweight, and most did no cycling at all.

Despite the shrinking cohort numbers, they still obtained the graph I tweeted.

The bars on the four points can be thought of as the error in the value (with this level of error we are 95% confident the value is correct, equivalent to a p-value of 0.05 and is considered statistically significant). So, for example, if I do between 1 and 59 minutes of cycling in a week, my risk of all-cause mortality (ACM) drops to somewhere between 60% and 95% of the baseline risk.

The presenter claimed the covariates (other factors we know about the people) were statistically removed from affecting the numbers attributed to the cycling. So, for example, given women generally live longer than men, this could have an effect on the results so this was accounted for when looking at the results.

The presenter further claimed that there was a j-curve relationship with the data i.e. the benefits are reduced at the 300+ minute mark. To explore this, rather than bucket the cycling times into four groups, they looked at the cycling times as they were i.e. a continuous spread of values between zero and nine hours of cycling per week.

While there is a curve with a maximum benefit around 4-5 hours, there is a fairly wide error margin (UCL = Upper confidence level, LCL = Lower confidence level i.e. the upper and lower values with a 95% confidence of being right). In other words, while the curve seems to head up after five hours, the error means it could just as easily be heading down to between 0.6 to 0.7. Similar results were obtained when cardiovascular mortality was specifically examined.

Next was the review of the effect of changing cycling habits.

The takeaway here is starting to cycle yields at least a 10% reduction in all-cause mortality while maintaining a cycling habit reduces risk by between 20% and close to 50%. For cardiovascular risk, maintaining a cycling habit had slightly better results with the risk reducing by 30-60%.

Recognised Limitations

The presentation did talk at some of the limitations:

  • Confounding factors: As mentioned they looked at the influence other factors, such as age and smoking had but claim their results still stand
  • Medication: There was no information on the medications being used by the diabetics and the effect they would have on mortality
  • Underlying disease leading to less exercise and more mortality (reverse causation): As with the confounding factors, they looked at the potential influence and ruled it out as affecting the results
  • There was no distinction in EPIC between Type 1 and Type 2 diabetes so no conclusions between the Types could be made but it is assumed the distribution in the study is close to the general population and, therefore 80-90% of the cohort was Type 2

tl;dr

For middle-aged Western European diabetics, the study showed:

  • Cycling reduces all-cause mortality and cardiovascular mortality
  • The level of benefit is harder to quantify but, the best benefit was shown to be at around 4-5 hours per week of cycling where the reduction in risk was roughly between 20-40%. Additional cycling may be of benefit but the error margins were too high to confirm this one way or the other
  • Starting a cycling habit or maintaining one shows benefit with the most benefit being for someone who maintain a cycling habit with the reduction in risk being between 20-50% for all-cause mortality and 30-60% for cardiovascular mortality
  • There was no distinction of Type so it is best to assume these results apply most strongly to Type 2 but I can see no reason why it would be different to Type 1s except for the additional risk of hypo if insulin dependent

No More StereoTypes: The ‘No True Diabetic’ Fallacy

T1D I am diabetes and these are my companions.. ignorance stereotype and rudeness
Image: https://www.healthline.com/diabetesmine

It is often said that every diabetic’s journey is unique and it is true. While many of us have similar, isolated experiences, no two journeys are the same.

Paradoxically, the diabetic community can be quite tribal with groups excluding those who diverge from the ‘norm’. As a Type 1 LADA I see this a lot. As an example, when it is said ALL Type 1s use insulin and I have the temerity to point out I do not, I am dismissed as not being a ‘true’ Type 1. Only when my honeymoon ends, it seems, will the LADA be accepted into the tribe as a ‘real’ Type 1. I see little value in this dismissal of diversity.

Is LADA Really Type 1 Though?

If we define the Types by etiology (cause) then LADA falls squarely in the Type 1 camp. Both are auto-immune and, at a point in time, there is literally no test that can be performed to distinguish a LADA from a honeymooning Type 1. The only difference between someone with LADA and someone with ‘classic’ Type 1 is the rate of progress of the disease. While the honeymoon period of a ‘typical’ Type 1 is, at most, a few weeks, a LADA can be insulin independent for up to decade. It is a long time to wait for acceptance.

The other option would be to define the Types phenotypically (how it presents) but it is hard to derive an adequate criteria to separate Types 1, 2, and LADA (or any other Type) on this basis. As alluded to above, the dependence on insulin is often suggested as the distinguishing factor but there are many Type 2s/MODYs/Gestational diabetics who use insulin and all LADAs eventually progress to insulin dependence meaning, by this paradigm, LADAs gradually transition from one Type to another which, in itself, is problematic.

Diabetes UK unambiguously consider LADA as a form of Type 1. Similarly JDRF Australia say “A slower onset form of Type 1 diabetes, known as Late-onset Autoimmune Diabetes of Adulthood (LADA) generally presents with milder symptoms of hyperglycaemia, and insulin therapy may not be immediately required at the time of diagnosis.”

The Struggle for Recognition for all Diabetics

The concept of the only ‘true’ Type 1 being one which uses insulin is a fallacy and is akin to the ‘No True Scotsman’ fallacy.

Person A: “No Scotsman puts sugar on his porridge.”
Person B: “But my uncle Angus is a Scotsman and he puts sugar on his porridge.”
Person A: “But no true Scotsman puts sugar on his porridge.”

This struggle is not unique to LADAs though; all Types have their frustrations when it comes to recognition. This became clear to me at ‘docday’. Docday was a gathering of the dedoc Voices with presentations by some of the Voices on their advocacy work. Ken Tait presented on his frustrations as an insulin dependent Type 2. It was Ken’s talk which inspired me to write this post.

So often Type 2s are assumed to have brought the disease on themselves and that it is a ‘lifestyle’ disease. It is also often assumed that if they changed their ‘lifestyle’ the disease would go away. While there are lifestyle ‘risk factors’, there is no known cause of Type 2 diabetes and many Type 2s simply do not fall into any of these ‘lifestyle factors’. No amount of sugar eating gives you diabetes, there are plenty of overweight people who are not diabetic (and skinny ones who are), and while Type 2 can go into remission through a low calorie diet or gastric surgery, this is only effective in something like 70% of cases. Just as it would be foolish to assume someone from Australia has blonde hair and blue eyes, it is equally as foolish to assume the journey of every Type 2 is the same.

For Type 1s, the struggle is often to be seen as separate from Type 2s. While the cause of Type 2 is unknown, Type 1 is auto-immune (the reason for the immune system going haywire is still unknown but I digress). Type 2s represent around 90% of all diabetics so a lot of research and a lot of articles in the popular press focus on Type 2s almost exclusively. Frequently Type 1s are told that they can put their disease into remission. While this is only partially true for Type 2s, it is completely untrue for Type 1s. Short of a pancreas/islet transplant and immune suppression drugs, there is no remission for Type 1 diabetes.

As mentioned, for LADAs we are rarely seen as ‘true’ Type 1s. We are either labelled as ‘self-loathing Type 2s’ or ‘honeymooning Type 1s’. With a honeymoon that can last up to a decade, for me, dismissing their voice as meaningless is short changing 10% of the Type 1 community. If we can accept other diseases as having stages/progression, why is this so hard for Type 1 diabetes?

Clinical Consequence

Where the issue becomes a little more serious is in the consideration of treatment for the various Types. According to the NDSS (registration database for all diabetics in Australia) there are literally no Type 1 diabetics in Australia who are insulin independent. Given I am one, how is this possible? Like with the registration forms of many diabetes associations, it is simply assumed that if you are Type 1, you use insulin.

To make matters worse, subsidies for medication and equipment is often separated down Type lines. The medications I use to help preserve my beta cells and maintain my insulin independent honeymoon are considered ‘Type 2’ medications so I receive no subsidy for these and obtain them through a ‘private prescription’ at full price. While proven to be effective and safe, this means there are many LADAs who, for no good reason, cannot access the medications they need to remain healthy and live to their full potential.

The notion of Type 1 and Type 2 medications is problematic, not just for LADAs. The same drugs which help me, can help insulin dependent Type 1s with insulin resistance (yes, some Type 1s are insulin resistant) and satiety (one of the hormones which make you feel ‘full’ after a meal is missing in Type 1s i.e. Amylin). This notion of feeling full can also prevent Type 1s over-eating, reduce the amounts of insulin they need, and ameliorate weight gain which is often associated with insulin when it is first used.

Strength in Diversity

Accepting that not all diabetics are the same, even within a Type, does not diminish the journey of any one individual. What it does do is give a voice to all and give other diabetics and health care professionals a more nuanced understanding of this heterogeneous disease. With diversity of experience comes diversity of thought and better solutions to the problems we all face. Every diabetic’s journey is different but we can still walk together and exclusion simply means we walk alone.

Becoming a dedoc Voice

It is always humbling when strangers puts their faith in you. This happened to me this week when I was accepted as a dedoc Voice. Dedoc is an international network of diabetes advocates. What is more, it is Type agnostic: all are welcome.

Dedoc also paid for me to virtually attend EASD 2020 (the annual meeting of the European Association for the Study of Diabetes). Usually such conferences are exclusively for medical professionals but dedoc negotiated to allow their ‘Voices’ to attend with a view of socialising the research for a wider audience. Scientists are not always the best at communicating their discoveries so I believe this can only be a good thing.

There was way too much for me to communicate in one blog post so I will be posting a few. For some of the ‘soundbyte’ discoveries, check out my Twitter feed.

Measuring the pH of Your Blood to Avoid DKA

I mentioned in the article comparing ketosis and diabetic ketoacidosis (DKA) that, in DKA (Diabetic Ketoacidosis), the liver floods the bloodstream with fuels, such as ketones which makes the blood acidic. However, the usual way a diabetic tests for DKA is to see if there are ketones in the blood. The problem with this approach is ketosis also releases ketones into the blood but ketosis is not dangerous. If we find our blood has ketones how do we know if we are in ketosis or DKA?

As usual, for the quick answer, head over to tl;dr.

The other measure often applied is to test the blood glucose level. With the liver flooding the blood with fuels during DKA, including glucose, it makes sense that the blood glucose levels will rapidly rise. This is usually true, unless the liver’s glucose stores are depleted. This situation leads to a condition called eDKA (Euglycemic DKA). This is a big problem for diabetics who follow a low carbohydrate diet as this can put the person into ketosis but can also deplete the glycogen stores of the body which means, if they do head towards DKA, there may not be a corresponding rise in blood glucose levels.

How is DKA Medically Defined?

DKA is not defined by ketone levels, even though this is often the measure used by diabetics to check. It is actually defined by the pH (acidity) of the blood and the amount of bicarbonate in the blood.

The normal pH of blood is between 7.35 and 7.45 and the body goes to great lengths to keep it in this range. In DKA this goes below 7.3. If only there was a way for diabetics to directly check what the pH of their blood was, this would remove the ketone-confusion. I am happy to say there is a way to check.

The Magic Meter

It took some finding but I have found a pH meter which can measure pH levels to one hundredth of a pH (pH is unitless). The meter is the LAQUAtwin-pH-22 by Horiba Scientific.

The tapered end has a flap which lifts up and a liquid sample is placed on the ISFET sensor underneath (0.1 mL or more). This meter costs around $200 so it is not cheap but cheaper alternatives, such as testing strips and immersive meters, simply do not have the accuracy needed.

To set up the meter ready for testing, you need to calibrate it with the provided solutions. Once this is done (and if you follow the instructions it really is quite easy) you are ready for your blood.

Getting a Blood Sample

It turns out getting blood out of the human body was a lot harder than I realized. I initially tried finger pricking but generating 0.1 mL of blood this way proved painful and futile as I struggled to get a reliable reading. In the end I used butterfly needles and vacutainers ordered online. This combo is what the blood collection folk use to collect blood for analysis.

To get the blood, you remove the needle cover, put the needle into your arm and then push the green end of the butterfly needle through the hole in the top of the vacutainer tube. For tips on technique, I highly recommend searching YouTube (this is what I did).

The end result was a vial full of blood.

I did also consider using syringes, given diabetics (or, at least, insulin dependent ones) have easy access to them but this way looked the simplest given I only had one free hand during the process.

For the curious, the vacutainer tube has a vacuum inside and so when the green end of the butterfly needle is pushed into the tube, the vacuum draws the blood out of the arm.

If you intend to try this at home, one other tip is to use the sample quickly. In my case, if I left it too long, the blood in the tube began clotting so get the blood into the meter quickly before coagulation.

The Result

The meter lived up to its promise and I got a reading of 7.48. This is a little on the alkaline side of the normal blood range but may have been a minor calibration error. Even accounting for the calibration, this is much higher than the 7.3 ‘danger zone’ so no DKA for me today.

tl;dr

Using the LAQUAtwin-pH-22 you can measure the pH of a liquid down to a sample size of 0.1mL and to an accuracy which is meaningful for checking for DKA. Using a butterfly needle and vacutainer I obtained online, I extracted blood from my arm and, using the meter showed a sensible result, consistent with someone who is not in DKA.

This opens up a new way for diabetics to check whether they are in DKA and is also a way aligned to the actual medical definition of DKA.